Suppr超能文献

剪切流中细胞在表面滚动和黏附的模拟:一般结果及选择素介导的中性粒细胞黏附分析

Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion.

作者信息

Hammer D A, Apte S M

机构信息

School of Chemical Engineering, Cornell University, Ithaca, New York 14853.

出版信息

Biophys J. 1992 Jul;63(1):35-57. doi: 10.1016/S0006-3495(92)81577-1.

Abstract

The receptor-mediated adhesion of cells to ligand-coated surfaces in viscous shear flow is an important step in many physiological processes, such as the neutrophil-mediated inflammatory response, lymphocyte homing, and tumor cell metastasis. This paper describes a calculational method which simulates the interaction of a single cell with a ligand-coated surface under flow. The cell is idealized as a microvilli-coated hard sphere covered with adhesive springs. The distribution of microvilli on the cell surface, the distribution of receptors on microvilli tips, and the forward and reverse reaction between receptor and ligand are all simulated using random number sampling of appropriate probability functions. The velocity of the cell at each time step in the simulation results from a balance of hydrodynamic, colloidal and bonding forces; the bonding force is derived by summing the individual contributions of each receptor-ligand tether. The model can simulate the effect of many parameters on adhesion, such as the number of receptors on microvilli tips, the density of ligand, the rates of reaction between receptor and ligand, the stiffness of the resulting receptor-ligand springs, the response of springs to strain, and the magnitude of the bulk hydrodynamic stresses. The model can successfully recreate the entire range of expected and observed adhesive phenomena, from completely unencumbered motion, to rolling, to transient attachment, to firm adhesion. Also, the method can generate meaningful statistical measures of adhesion, including the mean and variance in velocity, rate constants for cell attachment and detachment, and the frequency of adhesion. We find a critical modulating parameter of adhesion is the fractional spring slippage, which relates the strain of a bond to its rate of breakage; the higher the slippage, the faster the breakage for the same strain. Our analysis of neutrophil adhesive behavior on selectin-coated (CD62-coated) surfaces in viscous shear flow reported by Lawrence and Springer (Lawrence, M.B., and T.A. Springer 1991. Cell. 65:859-874) shows the fractional spring slippage of the CD62-LECAM-1 bond is likely below 0.01. We conclude the unique ability of this selectin bond to cause neutrophil rolling under flow is a result of its unique response to strain. Furthermore, our model can successfully recreate data on neutrophil rolling as function of CD62 surface density.

摘要

在粘性剪切流中,细胞通过受体介导与配体包被表面的粘附是许多生理过程中的重要步骤,如中性粒细胞介导的炎症反应、淋巴细胞归巢和肿瘤细胞转移。本文描述了一种计算方法,用于模拟流动状态下单细胞与配体包被表面的相互作用。该细胞被理想化地视为一个覆盖着微绒毛且带有粘附弹簧的硬球。利用适当概率函数的随机数采样来模拟细胞表面微绒毛的分布、微绒毛尖端受体的分布以及受体与配体之间的正向和反向反应。模拟中每个时间步的细胞速度源于流体动力学、胶体和键合力的平衡;键合力通过对每个受体 - 配体连接的个体贡献求和得出。该模型可以模拟许多参数对粘附的影响,如微绒毛尖端受体的数量、配体密度、受体与配体之间的反应速率、形成的受体 - 配体弹簧的刚度、弹簧对应变的响应以及整体流体动力学应力的大小。该模型能够成功再现从完全不受阻碍的运动到滚动、再到瞬时附着、最后到牢固粘附等一系列预期和观察到的粘附现象。此外,该方法可以生成有意义的粘附统计量,包括速度的均值和方差、细胞附着和脱离的速率常数以及粘附频率。我们发现粘附的一个关键调节参数是弹簧的分数滑移,它将键的应变与其断裂速率联系起来;滑移越高,相同应变下断裂越快。我们对劳伦斯和施普林格(Lawrence, M.B., and T.A. Springer 1991. Cell. 65:859 - 874)报道的粘性剪切流中中性粒细胞在选择素包被(CD62包被)表面的粘附行为分析表明,CD62 - LECAM - 1键的弹簧分数滑移可能低于0.01。我们得出结论,这种选择素键在流动下引起中性粒细胞滚动的独特能力是其对应变独特响应的结果。此外,我们的模型能够成功再现中性粒细胞滚动数据作为CD62表面密度的函数。

相似文献

4
P-selectin mediates neutrophil rolling on histamine-stimulated endothelial cells.
Biophys J. 1993 Oct;65(4):1560-9. doi: 10.1016/S0006-3495(93)81195-0.
5
A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution.
Biophys J. 1999 Dec;77(6):3371-83. doi: 10.1016/S0006-3495(99)77169-9.
6
Simultaneous tether extraction contributes to neutrophil rolling stabilization: a model study.
Biophys J. 2007 Jan 15;92(2):418-29. doi: 10.1529/biophysj.105.078808. Epub 2006 Oct 27.
7
Cell-free rolling mediated by L-selectin and sialyl Lewis(x) reveals the shear threshold effect.
Biophys J. 2000 Nov;79(5):2391-402. doi: 10.1016/S0006-3495(00)76484-8.
8
Simulation of detachment of specifically bound particles from surfaces by shear flow.
Biophys J. 1997 Jul;73(1):517-31. doi: 10.1016/S0006-3495(97)78090-1.
10
3D computational modeling and simulation of leukocyte rolling adhesion and deformation.
Comput Biol Med. 2008 Jun;38(6):738-53. doi: 10.1016/j.compbiomed.2008.04.002. Epub 2008 May 22.

引用本文的文献

1
Role of Cell Adhesion in Cancer Metastasis Formation: A Review.
ACS Omega. 2025 Feb 9;10(6):5193-5213. doi: 10.1021/acsomega.4c08140. eCollection 2025 Feb 18.
2
Improvement of cellular pattern organization and clarity through centrifugal force.
Biomed Mater. 2025 Feb 13;20(2):025025. doi: 10.1088/1748-605X/ada508.
3
Effects of molecular interaction and liver sinusoidal mechanical properties on leukocyte adhesions.
Biophys J. 2025 Feb 4;124(3):480-493. doi: 10.1016/j.bpj.2024.11.3315. Epub 2024 Nov 27.
4
Leukocyte rolling on engineered nanodot surfaces.
Micro Nano Lett. 2011 May;6(5):301-305. doi: 10.1049/mnl.2011.0184. Epub 2011 May 30.
5
FimH-mannose noncovalent bonds survive minutes to hours under force.
Biophys J. 2024 Sep 17;123(18):3038-3050. doi: 10.1016/j.bpj.2024.07.001. Epub 2024 Jul 2.
6
De novo DNA-based catch bonds.
Nat Chem. 2024 Dec;16(12):1943-1950. doi: 10.1038/s41557-024-01571-4. Epub 2024 Jun 24.
7
Computational analysis of cancer cell adhesion in curved vessels affected by wall shear stress for prediction of metastatic spreading.
Front Bioeng Biotechnol. 2024 May 27;12:1393413. doi: 10.3389/fbioe.2024.1393413. eCollection 2024.
9
A Simulation of the Mechanical Testing of the Cell Membrane and Cytoskeleton.
Micromachines (Basel). 2024 Mar 23;15(4):431. doi: 10.3390/mi15040431.
10
Two-component macrophage model for active phagocytosis with pseudopod formation.
Biophys J. 2024 May 7;123(9):1069-1084. doi: 10.1016/j.bpj.2024.03.026. Epub 2024 Mar 25.

本文引用的文献

1
Cell adhesion. Competition between nonspecific repulsion and specific bonding.
Biophys J. 1984 Jun;45(6):1051-64. doi: 10.1016/S0006-3495(84)84252-6.
5
Relationship between the velocity of rolling granulocytes and that of the blood flow in venules.
J Physiol. 1973 Aug;233(1):157-65. doi: 10.1113/jphysiol.1973.sp010303.
8
9
Leukocyte-endothelial interactions.
Blood. 1985 Mar;65(3):513-25.
10
The interaction between leukocytes and endothelium in vivo.
Ann N Y Acad Sci. 1987;516:348-61. doi: 10.1111/j.1749-6632.1987.tb33055.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验