Blangero J, Williams J T, Almasy L
Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245-0549, USA.
Genet Epidemiol. 2000;19 Suppl 1:S8-14. doi: 10.1002/1098-2272(2000)19:1+<::AID-GEPI2>3.0.CO;2-Y.
The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.
方差分量法目前广泛应用于数量性状的连锁分析。尽管这种方法有许多优点,但家系内性状分布的多元正态性这一潜在假设的重要性尚未得到广泛研究。模拟研究表明,具有尖峰分布的性状在进行简单分析时,其连锁检验统计量会出现过度的I型错误。我们推导了关于对数优势比分(lod score)预期渐近分布的偏差与数量性状的峰度和总遗传力之间关系的解析公式。一个简单的校正常数可为任何偏离正态性的情况和任何家系结构产生稳健的对数优势比分,并有效消除基于方差分量的连锁分析中因潜在概率模型设定错误而导致的I型错误膨胀问题。