Suppr超能文献

利用患者自述的临床病史因素预测心肌梗死。

Using patient-reportable clinical history factors to predict myocardial infarction.

作者信息

Wang S J, Ohno-Machado L, Fraser H S, Kennedy R L

机构信息

Clinical Information Systems Research & Development, Partners HealthCare System, Boston, MA, USA.

出版信息

Comput Biol Med. 2001 Jan;31(1):1-13. doi: 10.1016/s0010-4825(00)00022-6.

Abstract

Using a derivation data set of 1253 patients, we built several logistic regression and neural network models to estimate the likelihood of myocardial infarction based upon patient-reportable clinical history factors only. The best performing logistic regression model and neural network model had C-indices of 0.8444 and 0.8503, respectively, when validated on an independent data set of 500 patients. We conclude that both logistic regression and neural network models can be built that successfully predict the probability of myocardial infarction based on patient-reportable history factors alone. These models could have important utility in applications outside of a hospital setting when objective diagnostic test information is not yet be available.

摘要

我们使用一个包含1253名患者的推导数据集,构建了几个逻辑回归模型和神经网络模型,仅基于患者可报告的临床病史因素来估计心肌梗死的可能性。在一个由500名患者组成的独立数据集上进行验证时,表现最佳的逻辑回归模型和神经网络模型的C指数分别为0.8444和0.8503。我们得出结论,逻辑回归模型和神经网络模型都可以成功构建,仅根据患者可报告的病史因素来预测心肌梗死的概率。当客观诊断测试信息尚未可得时,这些模型在医院环境之外的应用中可能具有重要用途。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验