Suppr超能文献

黑腹果蝇中影响寿命的数量性状基因座的缺失定位

Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster.

作者信息

Pasyukova E G, Vieira C, Mackay T F

机构信息

Department of Genetics, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA.

出版信息

Genetics. 2000 Nov;156(3):1129-46. doi: 10.1093/genetics/156.3.1129.

Abstract

In a previous study, sex-specific quantitative trait loci (QTL) affecting adult longevity were mapped by linkage to polymorphic roo transposable element markers, in a population of recombinant inbred lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were each located on chromosomes 2 and 3, within sections 33E-46C and 65D-85F on the cytological map, respectively. We used quantitative deficiency complementation mapping to further resolve the locations of life span QTL within these regions. The Oregon and 2b strains were each crossed to 47 deficiencies spanning cytological regions 32F-44E and 64C-76B, and quantitative failure of the QTL alleles to complement the deficiencies was assessed. We initially detected a minimum of five and four QTL in the chromosome 2 and 3 regions, respectively, illustrating that multiple linked factors contribute to each QTL detected by recombination mapping. The QTL locations inferred from deficiency mapping did not generally correspond to those of candidate genes affecting oxidative and thermal stress or glucose metabolism. The chromosome 2 QTL in the 35B-E region was further resolved to a minimum of three tightly linked QTL, containing six genetically defined loci, 24 genes, and predicted genes that are positional candidates corresponding to life span QTL. This region was also associated with quantitative variation in life span in a sample of 10 genotypes collected from nature. Quantitative deficiency complementation is an efficient method for fine-scale QTL mapping in Drosophila and can be further improved by controlling the background genotype of the strains to be tested.

摘要

在先前的一项研究中,通过与多态性roo转座元件标记进行连锁分析,在源自俄勒冈州和黑腹果蝇2b品系的重组近交系群体中,绘制了影响成年寿命的性别特异性数量性状基因座(QTL)。两个寿命QTL分别位于第2和第3号染色体上,在细胞学图谱的33E - 46C和65D - 85F区域内。我们使用定量缺陷互补作图法进一步确定这些区域内寿命QTL的位置。将俄勒冈州和2b品系分别与跨越细胞学区域32F - 44E和64C - 76B的47个缺陷品系进行杂交,并评估QTL等位基因与这些缺陷互补的定量失败情况。我们最初分别在第2和第3号染色体区域检测到至少5个和4个QTL,这表明多个连锁因子对通过重组作图检测到的每个QTL都有贡献。从缺陷作图推断出的QTL位置通常与影响氧化应激、热应激或葡萄糖代谢的候选基因位置不对应。35B - E区域的第2号染色体QTL进一步解析为至少3个紧密连锁的QTL,包含6个遗传定义的位点、24个基因以及与寿命QTL对应的位置候选预测基因。在从自然界收集的10个基因型样本中,该区域也与寿命的定量变异相关。定量缺陷互补是果蝇中进行精细QTL作图的有效方法,并且可以通过控制待测品系的背景基因型进一步改进。

相似文献

1
Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster.
Genetics. 2000 Nov;156(3):1129-46. doi: 10.1093/genetics/156.3.1129.
2
The nature of quantitative genetic variation for Drosophila longevity.
Mech Ageing Dev. 2002 Jan;123(2-3):95-104. doi: 10.1016/s0047-6374(01)00330-x.
3
Quantitative trait loci affecting natural variation in Drosophila longevity.
Mech Ageing Dev. 2004 Mar;125(3):179-89. doi: 10.1016/j.mad.2003.12.008.
5
Quantitative trait locus mapping of fitness-related traits in Drosophila melanogaster.
Genet Res. 2001 Feb;77(1):107-16. doi: 10.1017/s0016672300004894.
6
High-resolution mapping of quantitative trait loci affecting increased life span in Drosophila melanogaster.
Genetics. 2006 Jul;173(3):1455-63. doi: 10.1534/genetics.105.055111. Epub 2006 May 15.
8
Shuttle craft: a candidate quantitative trait gene for Drosophila lifespan.
Aging Cell. 2004 Oct;3(5):297-307. doi: 10.1111/j.1474-9728.2004.00114.x.
10
The quantitative genetic basis of male mating behavior in Drosophila melanogaster.
Genetics. 2004 Jul;167(3):1249-63. doi: 10.1534/genetics.103.024372.

引用本文的文献

1
Genetic Modulation of Lifespan: Dynamic Effects, Sex Differences, and Body Weight Trade-offs.
bioRxiv. 2025 Jul 21:2025.04.27.649857. doi: 10.1101/2025.04.27.649857.
3
Genetic, Environmental, and Stochastic Components of Lifespan Variability: The Paradigm.
Int J Mol Sci. 2024 Apr 19;25(8):4482. doi: 10.3390/ijms25084482.
5
Epistasis for head morphology in Drosophila melanogaster.
G3 (Bethesda). 2021 Sep 27;11(10). doi: 10.1093/g3journal/jkab285.
6
The gene affects female receptivity and species isolation.
Proc Biol Sci. 2020 Mar 25;287(1923):20192765. doi: 10.1098/rspb.2019.2765.
7
Genetic Basis of Increased Lifespan and Postponed Senescence in .
G3 (Bethesda). 2020 Mar 5;10(3):1087-1098. doi: 10.1534/g3.120.401041.
8
Life-History Evolution and the Genetics of Fitness Components in .
Genetics. 2020 Jan;214(1):3-48. doi: 10.1534/genetics.119.300160.
9
The genetic basis of female pheromone differences between Drosophila melanogaster and D. simulans.
Heredity (Edinb). 2019 Jan;122(1):93-109. doi: 10.1038/s41437-018-0080-3. Epub 2018 May 19.
10
Selection for long and short sleep duration in Drosophila melanogaster reveals the complex genetic network underlying natural variation in sleep.
PLoS Genet. 2017 Dec 14;13(12):e1007098. doi: 10.1371/journal.pgen.1007098. eCollection 2017 Dec.

本文引用的文献

1
8
Multiple interval mapping for quantitative trait loci.
Genetics. 1999 Jul;152(3):1203-16. doi: 10.1093/genetics/152.3.1203.
9
Test of candidate gene--quantitative trait locus association applied to fatness in mice.
Heredity (Edinb). 1998 Dec;81 ( Pt 6):630-7. doi: 10.1046/j.1365-2540.1998.00450.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验