Suppr超能文献

黑腹果蝇雄性交配行为的数量遗传基础。

The quantitative genetic basis of male mating behavior in Drosophila melanogaster.

作者信息

Moehring Amanda J, Mackay Trudy F C

机构信息

Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695-7614, USA.

出版信息

Genetics. 2004 Jul;167(3):1249-63. doi: 10.1534/genetics.103.024372.

Abstract

Male mating behavior is an important component of fitness in Drosophila and displays segregating variation in natural populations. However, we know very little about the genes affecting naturally occurring variation in mating behavior, their effects, or their interactions. Here, we have mapped quantitative trait loci (QTL) affecting courtship occurrence, courtship latency, copulation occurrence, and copulation latency that segregate between a D. melanogaster strain selected for reduced male mating propensity (2b) and a standard wild-type strain (Oregon-R). Mating behavior was assessed in a population of 98 recombinant inbred lines derived from these two strains and QTL affecting mating behavior were mapped using composite interval mapping. We found four QTL affecting male mating behavior at cytological locations 1A;3E, 57C;57F, 72A;85F, and 96F;99A. We used deficiency complementation mapping to map the autosomal QTL with much higher resolution to five QTL at 56F5;56F8, 56F9;57A3, 70E1;71F4, 78C5;79A1, and 96F1;97B1. Quantitative complementation tests performed for 45 positional candidate genes within these intervals revealed 7 genes that failed to complement the QTL: eagle, 18 wheeler, Enhancer of split, Polycomb, spermatocyte arrest, l(2)05510, and l(2)k02206. None of these genes have been previously implicated in mating behavior, demonstrating that quantitative analysis of subtle variants can reveal novel pleiotropic effects of key developmental loci on behavior.

摘要

雄性交配行为是果蝇适应性的一个重要组成部分,并且在自然种群中表现出分离变异。然而,我们对影响交配行为自然变异的基因、它们的作用或相互作用知之甚少。在这里,我们定位了影响求偶发生、求偶潜伏期、交配发生和交配潜伏期的数量性状基因座(QTL),这些性状在一个因雄性交配倾向降低而被选择的黑腹果蝇品系(2b)和一个标准野生型品系(俄勒冈 - R)之间分离。在由这两个品系衍生的98个重组自交系群体中评估了交配行为,并使用复合区间作图法对影响交配行为的QTL进行了定位。我们在细胞学位置1A;3E、57C;57F、72A;85F和96F;99A发现了四个影响雄性交配行为的QTL。我们使用缺失互补作图法将常染色体QTL以更高的分辨率定位到五个QTL,分别位于56F5;56F8、56F9;57A3、70E1;71F4、78C5;79A1和96F1;97B1。对这些区间内的45个位置候选基因进行的定量互补测试揭示了7个不能互补QTL的基因:鹰基因、18轮车基因、分裂增强子、多梳蛋白、精母细胞停滞基因、l(2)05510和l(2)k02206。这些基因以前都没有被认为与交配行为有关,这表明对细微变异的定量分析可以揭示关键发育基因座对行为的新的多效性作用。

相似文献

1
The quantitative genetic basis of male mating behavior in Drosophila melanogaster.
Genetics. 2004 Jul;167(3):1249-63. doi: 10.1534/genetics.103.024372.
2
Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster.
Genetics. 2000 Nov;156(3):1129-46. doi: 10.1093/genetics/156.3.1129.
3
Quantitative trait loci for locomotor behavior in Drosophila melanogaster.
Genetics. 2006 Sep;174(1):271-84. doi: 10.1534/genetics.106.058099. Epub 2006 Jun 18.
4
Shuttle craft: a candidate quantitative trait gene for Drosophila lifespan.
Aging Cell. 2004 Oct;3(5):297-307. doi: 10.1111/j.1474-9728.2004.00114.x.
5
Quantitative trait loci affecting a courtship signal in Drosophila melanogaster.
Heredity (Edinb). 2002 Jul;89(1):1-6. doi: 10.1038/sj.hdy.6800099.
6
Quantitative trait loci affecting natural variation in Drosophila longevity.
Mech Ageing Dev. 2004 Mar;125(3):179-89. doi: 10.1016/j.mad.2003.12.008.
7
High-resolution mapping of quantitative trait loci affecting increased life span in Drosophila melanogaster.
Genetics. 2006 Jul;173(3):1455-63. doi: 10.1534/genetics.105.055111. Epub 2006 May 15.
8
The genetics of mating recognition between Drosophila simulans and D. sechellia.
Genet Res. 2003 Oct;82(2):117-26. doi: 10.1017/s0016672303006360.
9
The genetic basis of prezygotic reproductive isolation between Drosophila santomea and D. yakuba due to mating preference.
Genetics. 2006 May;173(1):215-23. doi: 10.1534/genetics.105.052993. Epub 2006 Mar 1.

引用本文的文献

2
Courtship song differs between African and European populations of and involves a strong effect locus.
bioRxiv. 2025 Feb 24:2024.05.14.594231. doi: 10.1101/2024.05.14.594231.
3
Predicting thresholds for population replacement gene drives.
BMC Biol. 2024 Feb 19;22(1):40. doi: 10.1186/s12915-024-01823-2.
4
The complex genetic architecture of male mate choice evolution between Drosophila species.
Heredity (Edinb). 2020 Jun;124(6):737-750. doi: 10.1038/s41437-020-0309-9. Epub 2020 Mar 20.
6
The Genetics of Male Pheromone Preference Difference Between and .
G3 (Bethesda). 2020 Jan 7;10(1):401-415. doi: 10.1534/g3.119.400780.
7
Genetic basis of allochronic differentiation in the fall armyworm.
BMC Evol Biol. 2017 Mar 6;17(1):68. doi: 10.1186/s12862-017-0911-5.
8
Multiple-Line Inference of Selection on Quantitative Traits.
Genetics. 2015 Sep;201(1):305-22. doi: 10.1534/genetics.115.178988. Epub 2015 Jul 2.
9
Gr33a modulates Drosophila male courtship preference.
Sci Rep. 2015 Jan 14;5:7777. doi: 10.1038/srep07777.

本文引用的文献

1
Heritability of Threshold Characters.
Genetics. 1950 Mar;35(2):212-36. doi: 10.1093/genetics/35.2.212.
2
The Heritability of All-or-None Traits: Viability of Poultry.
Genetics. 1949 Jul;34(4):395-411. doi: 10.1093/genetics/34.4.395.
3
The Effect of Inbreeding on Competitive Male-Mating Ability in DROSOPHILA MELANOGASTER.
Genetics. 1984 Apr;106(4):601-12. doi: 10.1093/genetics/106.4.601.
4
Quantitative trait loci for sexual isolation between Drosophila simulans and D. mauritiana.
Genetics. 2004 Jul;167(3):1265-74. doi: 10.1534/genetics.103.024364.
5
The genetics of mating recognition between Drosophila simulans and D. sechellia.
Genet Res. 2003 Oct;82(2):117-26. doi: 10.1017/s0016672303006360.
6
Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development.
Curr Biol. 2003 Aug 19;13(16):1388-96. doi: 10.1016/s0960-9822(03)00546-3.
7
Dopa decarboxylase (Ddc) affects variation in Drosophila longevity.
Nat Genet. 2003 Aug;34(4):429-33. doi: 10.1038/ng1218.
8
The genetic architecture of Drosophila sensory bristle number.
Genetics. 2002 Dec;162(4):1655-74. doi: 10.1093/genetics/162.4.1655.
9
The FlyBase database of the Drosophila genome projects and community literature.
Nucleic Acids Res. 2003 Jan 1;31(1):172-5. doi: 10.1093/nar/gkg094.
10
Finding genes that underlie complex traits.
Science. 2002 Dec 20;298(5602):2345-9. doi: 10.1126/science.1076641.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验