Saussele S, Weisser A, Müller M C, Emgi M, La Rosée P, Paschka P, Kuhn C, Willer A, Hehlmann R, Hochhaus A
III. Medizinische Univesitätsklinik, Fakultät für Klinische Medizin der Universität Heidelberg, Germany.
Leukemia. 2000 Nov;14(11):2006-10. doi: 10.1038/sj.leu.2401929.
Recently, a polymorphic base in exon 13 of the BCR gene (exon b2 of the major breakpoint cluster region) has been identified in the eighth position before the junctional region of BCR-ABL cDNA. Cytosine replaces thymidine; the corresponding triplets are AAT (T allele) and AAC (C allele), respectively, both coding for asparagine. Therefore, this polymorphism has no implication in the primary structure of BCR and BCR-ABL proteins. However, since the alteration is located close to the fusion region it may have a significant influence on the annealing of PCR primers, probes for real time PCR, and antisense oligonucleotides. We have developed a RT-PCR-based screening method to easily identify polymorphic BCR and BCR-ABL alleles in CML patients and normal individuals in order to estimate their frequency. After amplification from cDNA, a melting curve of a specific fluorogenic probe mapping to the 3' end of BCR exon b2 and spanning the polymorphism readily discriminates between normal and polymorphic BCR and BCR-ABL alleles. This reporter probe is 3' labeled with fluorescein and placed next to 5' LC Red640-labeled anchor probes mapping to the 5' ends of BCR exon b3 or ABL exon a2 so that resonance energy transfer occurs when the probes are hybridized (LightCycler technology). T and C alleles were discriminated by a melting temperature difference of the reporter probe of 3.2 K. We have investigated cDNAs derived from leukocytes from seven cell lines and a total of 229 individuals: normal donors, n = 15; BCR-ABL negative chronic myeloproliferative disorders, n=30; BCR-ABL negative acute leukemias, n= 11; b2a2BCR-ABL positive CML, n = 93; and b3a2BCR-ABL positive CML, n= 80. The frequency of the C allele was 33.0% in BCR-ABL negative individuals, 30.6% in b2a2BCR-ABL, and 23.8% in b3a2BCR-ABL positive CML. In CML patients, 27.7% of BCR-ABL and 27.2% of BCR alleles had the C allele (NS). In total, 132 of 458 (28.8%) exons b2 of BCR or BCR-ABL alleles demonstrated this polymorphism. We conclude that a thymidine/cytosine replacement occurs frequently in BCR exon b2. Probes for real time quantitative RT-PCR should be designed not to map to the critical region in order to avoid underestimation of the number of BCR-ABL transcripts.
最近,在BCR基因第13外显子(主要断裂点簇集区域的b2外显子)中,于BCR-ABL cDNA连接区域前第八位发现了一个多态性碱基。胞嘧啶取代了胸腺嘧啶;相应的三联体分别为AAT(T等位基因)和AAC(C等位基因),二者均编码天冬酰胺。因此,这种多态性对BCR和BCR-ABL蛋白的一级结构没有影响。然而,由于该改变位于融合区域附近,它可能对PCR引物、实时PCR探针及反义寡核苷酸的退火有显著影响。我们开发了一种基于逆转录聚合酶链反应(RT-PCR)的筛查方法,以便轻松鉴定慢性粒细胞白血病(CML)患者和正常个体中的多态性BCR和BCR-ABL等位基因,从而估计其频率。从cDNA扩增后,一个特异性荧光探针的熔解曲线可绘制到BCR外显子b2的3'端并跨越该多态性,从而轻松区分正常和多态性BCR及BCR-ABL等位基因。该报告探针在3'端用荧光素标记,并置于5'端用LC Red640标记的锚定探针旁边,后者绘制到BCR外显子b3或ABL外显子a2的5'端,这样当探针杂交时就会发生共振能量转移(LightCycler技术)。通过报告探针3.2 K的熔解温度差异来区分T和C等位基因。我们研究了来自7个细胞系和总共229个个体的白细胞衍生的cDNA:正常供体,n = 15;BCR-ABL阴性慢性骨髓增殖性疾病,n = 30;BCR-ABL阴性急性白血病,n = 11;b2a2 BCR-ABL阳性CML,n = 93;以及b3a2 BCR-ABL阳性CML,n = 80。在BCR-ABL阴性个体中,C等位基因的频率为33.0%,在b2a2 BCR-ABL中为30.6%,在b3a2 BCR-ABL阳性CML中为23.8%。在CML患者中,27.7%的BCR-ABL和27.2%的BCR等位基因具有C等位基因(无显著性差异)。总共458个BCR或BCR-ABL等位基因中的132个(28.8%)外显子b2表现出这种多态性。我们得出结论,BCR外显子b2中经常发生胸腺嘧啶/胞嘧啶替换。实时定量RT-PCR的探针设计不应绘制到关键区域,以避免低估BCR-ABL转录本的数量。