Suppr超能文献

极性跨膜结构域将蛋白质靶向酵母液泡内部。

Polar transmembrane domains target proteins to the interior of the yeast vacuole.

作者信息

Reggiori F, Black M W, Pelham H R

机构信息

Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom.

出版信息

Mol Biol Cell. 2000 Nov;11(11):3737-49. doi: 10.1091/mbc.11.11.3737.

Abstract

Membrane proteins transported to the yeast vacuole can have two fates. Some reach the outer vacuolar membrane, whereas others enter internal vesicles, which form in late endosomes, and are ultimately degraded. The vacuolar SNAREs Nyv1p and Vam3p avoid this fate by using the AP-3-dependent pathway, which bypasses late endosomes, but the endosomal SNARE Pep12p must avoid it more directly. Deletion analysis revealed no cytoplasmic sequences necessary to prevent the internalization of Pep12p in endosomes. However, introduction of acidic residues into the cytoplasmic half of the transmembrane domain created a dominant internalization signal. In other contexts, this same feature diverted proteins from the Golgi to endosomes and slowed their exit from the endoplasmic reticulum. The more modestly polar transmembrane domains of Sec12p and Ufe1p, which normally serve to hold these proteins in the endoplasmic reticulum, also cause Pep12p to be internalized, as does that of the vacuolar protein Cps1p. It seems that quality control mechanisms recognize polar transmembrane domains at multiple points in the secretory and endocytic pathways and in endosomes sort proteins for subsequent destruction in the vacuole. These mechanisms may minimize the damaging effects of abnormally exposed polar residues while being exploited for the localization of some normal proteins.

摘要

转运至酵母液泡的膜蛋白可能有两种命运。一些蛋白会到达液泡外膜,而另一些则进入在内体晚期形成的内部囊泡,并最终被降解。液泡SNARE蛋白Nyv1p和Vam3p通过依赖AP-3的途径避免了这种命运,该途径绕过了内体晚期,但内体SNARE蛋白Pep12p必须更直接地避免这种命运。缺失分析表明,没有细胞质序列对于防止Pep12p在内体中内化是必需的。然而,在跨膜结构域的细胞质一半引入酸性残基会产生一个显性内化信号。在其他情况下,相同的特征会使蛋白质从高尔基体转向内体,并减缓它们从内质网的输出。Sec12p和Ufe1p的极性较低的跨膜结构域通常用于将这些蛋白质保留在内质网中,它们也会导致Pep12p被内化,液泡蛋白Cps1p的跨膜结构域也是如此。似乎质量控制机制在分泌和内吞途径的多个点识别极性跨膜结构域,并在内体中对蛋白质进行分类,以便随后在液泡中被破坏。这些机制可能会将异常暴露的极性残基的破坏作用降至最低,同时被用于一些正常蛋白质的定位。

相似文献

1
Polar transmembrane domains target proteins to the interior of the yeast vacuole.
Mol Biol Cell. 2000 Nov;11(11):3737-49. doi: 10.1091/mbc.11.11.3737.
3
A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins.
J Cell Biol. 2000 Oct 30;151(3):587-600. doi: 10.1083/jcb.151.3.587.
5
Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes.
Mol Biol Cell. 2003 Sep;14(9):3605-16. doi: 10.1091/mbc.e02-12-0777. Epub 2003 May 18.
6
The yeast endosomal t-SNARE, Pep12p, functions in the absence of its transmembrane domain.
Traffic. 2000 Jan;1(1):45-55. doi: 10.1034/j.1600-0854.2000.010108.x.
7
Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast.
EMBO J. 1997 Apr 15;16(8):1832-41. doi: 10.1093/emboj/16.8.1832.
8
Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes.
Mol Biol Cell. 2000 Jan;11(1):23-38. doi: 10.1091/mbc.11.1.23.

引用本文的文献

1
A plasmid module for PCR-based gene modification for the accurate measurement of vacuolar delivery of specific proteins in yeast .
Autophagy Rep. 2025 May 31;4(1):2511724. doi: 10.1080/27694127.2025.2511724. eCollection 2025.
2
Disordered hinge regions of the AP-3 adaptor complex promote vesicle budding from the late Golgi in yeast.
J Cell Sci. 2024 Nov 1;137(21). doi: 10.1242/jcs.262234. Epub 2024 Nov 8.
3
The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity.
J Cell Biol. 2022 May 2;221(5). doi: 10.1083/jcb.202109084. Epub 2022 Apr 9.
4
ER-phagy: mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum.
Physiol Rev. 2022 Jul 1;102(3):1393-1448. doi: 10.1152/physrev.00038.2021. Epub 2022 Feb 21.
5
A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways.
J Cell Biol. 2022 Apr 4;221(4). doi: 10.1083/jcb.202107148. Epub 2022 Feb 17.
6
Genetically encoded multimode reporter of adaptor complex 3 traffic in budding yeast.
Traffic. 2021 Jan;22(1-2):38-44. doi: 10.1111/tra.12772. Epub 2020 Dec 7.
7
ESCRT machinery plays a role in microautophagy in yeast.
BMC Mol Cell Biol. 2020 Oct 7;21(1):70. doi: 10.1186/s12860-020-00314-w.
8
AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering.
EMBO J. 2020 Oct 15;39(20):e105117. doi: 10.15252/embj.2020105117. Epub 2020 Aug 25.
9
Retrograde trafficking and quality control of yeast synaptobrevin, Snc1, are conferred by its transmembrane domain.
Mol Biol Cell. 2019 Jul 1;30(14):1729-1742. doi: 10.1091/mbc.E19-02-0117. Epub 2019 May 8.
10
Rab5-independent activation and function of yeast Rab7-like protein, Ypt7p, in the AP-3 pathway.
PLoS One. 2019 Jan 25;14(1):e0210223. doi: 10.1371/journal.pone.0210223. eCollection 2019.

本文引用的文献

1
Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex.
Nature. 2000 Mar 23;404(6776):355-62. doi: 10.1038/35006120.
2
Understanding membrane protein structure by design.
Nat Struct Biol. 2000 Feb;7(2):91-4. doi: 10.1038/72454.
3
Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes.
Mol Biol Cell. 2000 Jan;11(1):23-38. doi: 10.1091/mbc.11.1.23.
4
NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin.
J Biomol NMR. 1999 Jul;14(3):203-7. doi: 10.1023/a:1008382027065.
6
Yeast mutants affecting possible quality control of plasma membrane proteins.
Mol Cell Biol. 1999 May;19(5):3588-99. doi: 10.1128/MCB.19.5.3588.
7
Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body.
Cell. 1998 Dec 11;95(6):847-58. doi: 10.1016/s0092-8674(00)81707-9.
8
Targeting to the endoplasmic reticulum in yeast cells by determinants present in transmembrane domains.
J Biol Chem. 1998 Dec 11;273(50):33273-8. doi: 10.1074/jbc.273.50.33273.
9
Novel pathways, membrane coats and PI kinase regulation in yeast lysosomal trafficking.
Semin Cell Dev Biol. 1998 Oct;9(5):527-33. doi: 10.1006/scdb.1998.0255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验