Sette C, Inouye C J, Stroschein S L, Iaquinta P J, Thorner J
Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA.
Mol Biol Cell. 2000 Nov;11(11):4033-49. doi: 10.1091/mbc.11.11.4033.
Ste5 is essential for pheromone response and binds components of a mitogen-activated protein kinase (MAPK) cascade: Ste11 (MEKK), Ste7 (MEK), and Fus3 (MAPK). Pheromone stimulation releases Gbetagamma (Ste4-Ste18), which recruits Ste5 and Ste20 (p21-activated kinase) to the plasma membrane, activating the MAPK cascade. A RING-H2 domain in Ste5 (residues 177-229) negatively regulates Ste5 function and mediates its interaction with Gbetagamma. Ste5(C177A C180A), carrying a mutated RING-H2 domain, cannot complement a ste5Delta mutation, yet supports mating even in ste4Delta ste5Delta cells when artificially dimerized by fusion to glutathione S-transferase (GST). In contrast, wild-type Ste5 fused to GST permits mating of ste5Delta cells, but does not allow mating of ste4Delta ste5Delta cells. This differential behavior provided the basis of a genetic selection for STE5 gain-of-function mutations. MATa ste4Delta ste5Delta cells expressing Ste5-GST were mutagenized chemically and plasmids conferring the capacity to mate were selected. Three independent single-substitution mutations were isolated. These constitutive STE5 alleles induce cell cycle arrest, transcriptional activation, and morphological changes normally triggered by pheromone, even when Gbetagamma is absent. The first, Ste5(C226Y), alters the seventh conserved position in the RING-H2 motif, confirming that perturbation of this domain constitutively activates Ste5 function. The second, Ste5(P44L), lies upstream of a basic segment, whereas the third, Ste5(S770K), is situated within an acidic segment in a region that contacts Ste7. None of the mutations increased the affinity of Ste5 for Ste11, Ste7, or Fus3. However, the positions of these novel-activating mutations suggested that, in normal Ste5, the N terminus may interact with the C terminus. Indeed, in vitro, GST-Ste5(1-518) was able to associate specifically with radiolabeled Ste5(520-917). Furthermore, both the P44L and S770K mutations enhanced binding of full-length Ste5 to GST-Ste5(1-518), whereas they did not affect Ste5 dimerization. Thus, binding of Gbetagamma to the RING-H2 domain may induce a conformational change that promotes association of the N- and C-terminal ends of Ste5, stimulating activation of the MAPK cascade by optimizing orientation of the bound kinases and/or by increasing their accessibility to Ste20-dependent phosphorylation (or both). In accord with this model, the novel Ste5 mutants copurified with Ste7 and Fus3 in their activated state and their activation required Ste20.
Ste5对于信息素反应至关重要,它能结合丝裂原活化蛋白激酶(MAPK)级联反应的组分:Ste11(MEKK)、Ste7(MEK)和Fus3(MAPK)。信息素刺激会释放Gβγ(Ste4 - Ste18),后者将Ste5和Ste20(p21活化激酶)招募到质膜,激活MAPK级联反应。Ste5中的一个RING - H2结构域(第177 - 229位氨基酸残基)对Ste5功能起负向调节作用,并介导其与Gβγ的相互作用。携带突变RING - H2结构域的Ste5(C177A C180A)不能互补ste5Δ突变,但当通过与谷胱甘肽S - 转移酶(GST)融合而人工二聚化时,即便在ste4Δ ste5Δ细胞中也能支持交配。相比之下,与GST融合的野生型Ste5能使ste5Δ细胞交配,但不能使ste4Δ ste5Δ细胞交配。这种差异行为为STE5功能获得性突变的遗传筛选提供了基础。对表达Ste5 - GST的MATa ste4Δ ste5Δ细胞进行化学诱变,并筛选赋予交配能力的质粒。分离出了三个独立的单取代突变。这些组成型STE5等位基因即使在没有Gβγ的情况下,也能诱导细胞周期停滞、转录激活以及通常由信息素触发的形态变化。第一个是Ste5(C226Y),改变了RING - H2基序中的第七个保守位置,证实该结构域的扰动会组成型激活Ste5功能。第二个是Ste5(P44L),位于一个碱性片段上游,而第三个是Ste5(S770K),位于与Ste7接触区域的一个酸性片段内。这些突变均未增加Ste5与Ste11、Ste7或Fus3的亲和力。然而,这些新型激活突变的位置表明,在正常的Ste5中,N末端可能与C末端相互作用。事实上,在体外,GST - Ste5(1 - 518)能够与放射性标记的Ste5(520 - 917)特异性结合。此外,P44L和S770K突变均增强了全长Ste5与GST - Ste5(1 - 518)的结合,而它们并不影响Ste5的二聚化。因此,Gβγ与RING - H2结构域的结合可能会诱导构象变化,促进Ste5的N末端和C末端缔合,通过优化结合激酶的方向和/或增加它们对Ste20依赖性磷酸化的可及性(或两者兼有)来刺激MAPK级联反应的激活。与该模型一致,新型Ste5突变体在其活化状态下与Ste7和Fus3共纯化,且它们的激活需要Ste20。