Eells J T, Henry M M, Gross G J, Baker J E
Department of Pharmacology, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Circ Res. 2000 Nov 10;87(10):915-21. doi: 10.1161/01.res.87.10.915.
Increased resistance to myocardial ischemia in chronically hypoxic immature rabbit hearts is associated with activation of ATP-sensitive K(+) (K(ATP)) channels. We determined whether chronic hypoxia from birth alters the function of the mitochondrial K(ATP) channel. The K(ATP) channel opener bimakalim (1 micromol/L) increased postischemic recovery of left ventricular developed pressure in isolated normoxic (FIO(2)=0.21) hearts to values (42+/-4% to 67+/-5% ) not different from those of hypoxic controls but did not alter postischemic recovery of developed pressure in isolated chronically hypoxic (FIO(2)=0.12) hearts (69+/-5% to 72+/-5%). Conversely, the K(ATP) channel blockers glibenclamide (1 micromol/L) and 5-hydroxydecanoate (5-HD, 300 micromol/L) attenuated the cardioprotective effect of hypoxia but had no effect on postischemic recovery of function in normoxic hearts. ATP synthesis rates in hypoxic heart mitochondria (3.92+/-0.23 micromol ATP. min(-1). mg mitochondrial protein(-1)) were significantly greater than rates in normoxic hearts (2.95+/-0.08 micromol ATP. min(-1). mg mitochondrial protein(-1)). Bimakalim (1 micromol/L) decreased the rate of ATP synthesis in normoxic heart mitochondria consistent with mitochondrial K(ATP) channel activation and mitochondrial depolarization. The effect of bimakalim on ATP synthesis was antagonized by the K(ATP) channel blockers glibenclamide (1 micromol/L) and 5-HD (300 micromol/L) in normoxic heart mitochondria, whereas glibenclamide and 5-HD alone had no effect. In hypoxic heart mitochondria, the rate of ATP synthesis was not affected by bimakalim but was attenuated by glibenclamide and 5-HD. We conclude that mitochondrial K(ATP) channels are activated in chronically hypoxic rabbit hearts and implicate activation of this channel in the improved mitochondrial bioenergetics and cardioprotection observed.
慢性低氧未成熟兔心脏对心肌缺血的耐受性增加与ATP敏感性钾(K(ATP))通道的激活有关。我们确定出生后慢性低氧是否会改变线粒体K(ATP)通道的功能。K(ATP)通道开放剂苄甲胍(1微摩尔/升)可使离体常氧(FIO(2)=0.21)心脏缺血后左心室发展压的恢复增加至与低氧对照组无差异的值(42±4%至67±5%),但不会改变离体慢性低氧(FIO(2)=0.12)心脏缺血后发展压的恢复(69±5%至72±5%)。相反,K(ATP)通道阻滞剂格列本脲(1微摩尔/升)和5-羟基癸酸(5-HD,300微摩尔/升)减弱了低氧的心脏保护作用,但对常氧心脏缺血后功能的恢复没有影响。低氧心脏线粒体中的ATP合成速率(3.92±0.23微摩尔ATP·分钟(-1)·毫克线粒体蛋白(-1))显著高于常氧心脏中的速率(2.95±0.08微摩尔ATP·分钟(-1)·毫克线粒体蛋白(-1))。苄甲胍(1微摩尔/升)降低了常氧心脏线粒体中的ATP合成速率,这与线粒体K(ATP)通道激活和线粒体去极化一致。在常氧心脏线粒体中,苄甲胍对ATP合成的作用被K(ATP)通道阻滞剂格列本脲(1微摩尔/升)和5-HD(300微摩尔/升)拮抗,而单独的格列本脲和5-HD没有作用。在低氧心脏线粒体中,ATP合成速率不受苄甲胍影响,但被格列本脲和5-HD减弱。我们得出结论,慢性低氧兔心脏中线粒体K(ATP)通道被激活,并认为该通道的激活与观察到的线粒体生物能量学改善和心脏保护有关。