Suppr超能文献

钒酸盐诱导纯化的麦芽糖转运复合物捕获核苷酸需要ATP水解。

Vanadate-induced trapping of nucleotides by purified maltose transport complex requires ATP hydrolysis.

作者信息

Sharma S, Davidson A L

机构信息

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

J Bacteriol. 2000 Dec;182(23):6570-6. doi: 10.1128/JB.182.23.6570-6576.2000.

Abstract

The maltose transport system in Escherichia coli is a member of the ATP-binding cassette superfamily of transporters that is defined by the presence of two nucleotide-binding domains or subunits and two transmembrane regions. The bacterial import systems are unique in that they require a periplasmic substrate-binding protein to stimulate the ATPase activity of the transport complex and initiate the transport process. Upon stimulation by maltose-binding protein, the intact MalFGK(2) transport complex hydrolyzes ATP with positive cooperativity, suggesting that the two nucleotide-binding MalK subunits interact to couple ATP hydrolysis to transport. The ATPase activity of the intact transport complex is inhibited by vanadate. In this study, we investigated the mechanism of inhibition by vanadate and found that incubation of the transport complex with MgATP and vanadate results in the formation of a stably inhibited species containing tightly bound ADP that persists after free vanadate and nucleotide are removed from the solution. The inhibited species does not form in the absence of MgCl(2) or of maltose-binding protein, and ADP or another nonhydrolyzable analogue does not substitute for ATP. Taken together, these data conclusively show that ATP hydrolysis must precede the formation of the vanadate-inhibited species in this system and implicate a role for a high-energy, ADP-bound intermediate in the transport cycle. Transport complexes containing a mutation in a single MalK subunit are still inhibited by vanadate during steady-state hydrolysis; however, a stably inhibited species does not form. ATP hydrolysis is therefore necessary, but not sufficient, for vanadate-induced nucleotide trapping.

摘要

大肠杆菌中的麦芽糖转运系统是转运蛋白ATP结合盒超家族的成员,该家族由两个核苷酸结合结构域或亚基以及两个跨膜区域组成。细菌的导入系统独特之处在于它们需要一个周质底物结合蛋白来刺激转运复合物的ATP酶活性并启动转运过程。在麦芽糖结合蛋白的刺激下,完整的MalFGK(2)转运复合物以正协同性水解ATP,这表明两个核苷酸结合的MalK亚基相互作用,将ATP水解与转运偶联起来。完整转运复合物的ATP酶活性受到钒酸盐的抑制。在本研究中,我们研究了钒酸盐的抑制机制,发现将转运复合物与MgATP和钒酸盐一起孵育会导致形成一种稳定抑制的物种,该物种含有紧密结合的ADP,在从溶液中去除游离钒酸盐和核苷酸后仍然存在。在没有MgCl(2)或麦芽糖结合蛋白的情况下不会形成抑制物种,并且ADP或另一种不可水解的类似物不能替代ATP。综上所述,这些数据确凿地表明,在该系统中,ATP水解必须先于钒酸盐抑制物种的形成,并暗示在转运循环中存在一个高能的、结合ADP的中间体的作用。在稳态水解过程中,含有单个MalK亚基突变的转运复合物仍然会被钒酸盐抑制;然而,不会形成稳定抑制的物种。因此,ATP水解对于钒酸盐诱导的核苷酸捕获是必要的,但不是充分的。

相似文献

1
Vanadate-induced trapping of nucleotides by purified maltose transport complex requires ATP hydrolysis.
J Bacteriol. 2000 Dec;182(23):6570-6. doi: 10.1128/JB.182.23.6570-6576.2000.
2
Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport.
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1525-30. doi: 10.1073/pnas.98.4.1525. Epub 2001 Feb 6.
5
Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli.
J Bacteriol. 1997 Sep;179(17):5458-64. doi: 10.1128/jb.179.17.5458-5464.1997.
7
Maltose-binding protein is open in the catalytic transition state for ATP hydrolysis during maltose transport.
J Biol Chem. 2004 Jul 2;279(27):28243-50. doi: 10.1074/jbc.M403508200. Epub 2004 Apr 26.
8
Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter.
EMBO J. 1994 Apr 1;13(7):1752-9. doi: 10.1002/j.1460-2075.1994.tb06439.x.

引用本文的文献

1
The Evolution of ABC Importers.
J Mol Biol. 2025 Jun 1;437(11):169082. doi: 10.1016/j.jmb.2025.169082. Epub 2025 Mar 13.
2
Mechanistic Insights Revealed by YbtPQ in the Occluded State.
Biomolecules. 2024 Mar 8;14(3):322. doi: 10.3390/biom14030322.
3
Structural basis of bile salt extrusion and small-molecule inhibition in human BSEP.
Nat Commun. 2023 Nov 10;14(1):7296. doi: 10.1038/s41467-023-43109-1.
4
Solid-State NMR Reveals Asymmetric ATP Hydrolysis in the Multidrug ABC Transporter BmrA.
J Am Chem Soc. 2022 Jul 13;144(27):12431-12442. doi: 10.1021/jacs.2c04287. Epub 2022 Jul 1.
5
Conformational trapping of an ABC transporter in polymer lipid nanoparticles.
Biochem J. 2022 Jan 28;479(2):145-159. doi: 10.1042/BCJ20210312.
6
Conformational changes in the yeast mitochondrial ABC transporter Atm1 during the transport cycle.
Sci Adv. 2021 Dec 24;7(52):eabk2392. doi: 10.1126/sciadv.abk2392. Epub 2021 Dec 22.
7
ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter.
Molecules. 2020 Nov 12;25(22):5268. doi: 10.3390/molecules25225268.
8
Defining the mechanism of the mitochondrial Atm1p [2Fe-2S] cluster exporter.
Metallomics. 2020 Jun 24;12(6):902-915. doi: 10.1039/c9mt00286c.
9
Direct Spectroscopic Detection of ATP Turnover Reveals Mechanistic Divergence of ABC Exporters.
Structure. 2017 Aug 1;25(8):1264-1274.e3. doi: 10.1016/j.str.2017.06.014. Epub 2017 Jul 14.
10
Recent advances in nanodisc technology for membrane protein studies (2012-2017).
FEBS Lett. 2017 Jul;591(14):2057-2088. doi: 10.1002/1873-3468.12706. Epub 2017 Jul 6.

本文引用的文献

2
Subunit interactions in ABC transporters: towards a functional architecture.
FEMS Microbiol Lett. 1999 Oct 15;179(2):187-202. doi: 10.1111/j.1574-6968.1999.tb08727.x.
6
Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli.
J Bacteriol. 1997 Sep;179(17):5458-64. doi: 10.1128/jb.179.17.5458-5464.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验