Suppr超能文献

利用Voronoi镶嵌法研究神经元的数量密度和空间分布。

Voronoi tessellation to study the numerical density and the spatial distribution of neurones.

作者信息

Duyckaerts C, Godefroy G

机构信息

Laboratoire de Neuropathologie R. Escourolle, Hôpital de La Salp etrière, 47 Boulevard de l'Hôpital, Paris, France.

出版信息

J Chem Neuroanat. 2000 Oct;20(1):83-92. doi: 10.1016/s0891-0618(00)00064-8.

Abstract

The conditions of regularity and isotropy, required by standard morphometric procedures, are generally not fulfilled in the central nervous system (CNS) where cells are distributed in a highly complex manner. The evaluation of the mean numerical density of neuronal or glial cells does not take into account the topographical heterogeneity and thereby misses the information that it contains. A local measurement of the density can be obtained by evaluating the 'numerical density of one cell', i.e. the ratio 1/(the volume that the cell occupies). This volume is the region of space that is closer to that cell than to any other. It has the shape of a polyhedron, called Voronoi (or Dirichlet) polyhedron. In 2-D, the Voronoi polyhedron is a polygon, the sides of which are located at mid-distance from the neighbouring cells. The Voronoi polygons are contiguous and their set fills the space without interstice or overlap, i.e. they perform a 'tessellation' that may yield a density map when the same colours are used to fill polygons of similar sizes. The use of Voronoi polygons allows computing the confidence interval of a mean numerical density that makes statistical comparisons possible. The tessellation also provides information concerning spatial distribution; the areas of the Voronoi polygons do not vary much when the cells are regularly distributed. On the contrary, small and large polygons are found when cellular clusters are present. The coefficient of variation of the polygon areas is an objective measurement of their variability and helps to define 'regular', 'clustered' and 'random' distributions. When cells are clustered, small polygons are contiguous and may be objectively identified by simple algorithms. Voronoi tessellations are easily performed in 2-D. On an average the area of a polygon times the thickness of the section equals the volume of the corresponding polyhedron. 3-D tessellations that are theoretically possible and for which algorithms have been published remain to be adapted to histological works.

摘要

标准形态测量程序所要求的规则性和各向同性条件,在中枢神经系统(CNS)中通常无法满足,因为其中的细胞以高度复杂的方式分布。对神经元或神经胶质细胞平均数值密度的评估没有考虑地形异质性,从而遗漏了其中包含的信息。通过评估“单个细胞的数值密度”,即1/(细胞占据的体积),可以获得密度的局部测量值。这个体积是空间中比任何其他细胞都更靠近该细胞的区域。它具有多面体的形状,称为沃罗诺伊(或狄利克雷)多面体。在二维中,沃罗诺伊多面体是一个多边形,其边位于与相邻细胞的中间距离处。沃罗诺伊多边形是相邻的,它们的集合填充空间而没有间隙或重叠,即它们执行一种“镶嵌”,当使用相同颜色填充大小相似的多边形时,可能会产生密度图。使用沃罗诺伊多边形可以计算平均数值密度的置信区间,从而进行统计比较。镶嵌还提供有关空间分布的信息;当细胞规则分布时,沃罗诺伊多边形的面积变化不大。相反,当存在细胞簇时,会发现小多边形和大多边形。多边形面积的变异系数是其变异性的客观测量,有助于定义“规则”、“聚集”和“随机”分布。当细胞聚集时,小多边形是相邻的,可以通过简单算法客观识别。二维中的沃罗诺伊镶嵌很容易进行。平均而言,多边形的面积乘以切片的厚度等于相应多面体的体积。理论上可行且已发表算法的三维镶嵌仍有待应用于组织学工作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验