Collin S P, Lloyd D J, Wagner H J
Department of Zoology, The University of Western Australia, Nedlands, Australia.
Philos Trans R Soc Lond B Biol Sci. 2000 Sep 29;355(1401):1315-20. doi: 10.1098/rstb.2000.0691.
The relative importance of vision in a foveate group of alepocephalid teleosts is examined in the context of a deep-sea habitat beyond the penetration limits of sunlight. The large eyes of Conocara spp. possess deep convexiclivate foveae lined with Müller cells comprising radial shafts of intermediate filaments and horizontal processes. Photoreceptor cell (171.8 x 10(3) rods mm(-2)) and retinal ganglion cell (11.9 x 10(3) cells mm(-2)) densities peak within the foveal clivus and the perifloveal slopes, respectively, with a centro-peripheral gradient between 3:1 (photoreceptors) and over 20:1 (ganglion cells). The marked increase in retinal sampling localized in temporal retina, coupled with a high summation ratio (13:1), suggest that foveal vision optimizes both spatial resolving power and sensitivity in the binocular frontal visual field. The elongated optic nerve head is comprised of over 500 optic papillae, which join at the embryonic fissure to form a thin nervous sheet behind the eye. The optic nerve is divided into two axonal bundles; one receiving input from the fovea (only unmyelinated axons) and the other from non-specialized retinal regions (25% of axons are myelinated), both of which appear to be separated as they reach the visual centres of the central nervous system. Comparison of the number of primary (first-order) axonal pathways for the visual (a total of 63.4 x 10(6) rod photoreceptors) and olfactory (a total of 15.24 x 10(3) olfactory nerve axons) inputs shows a marked visual bias (ratio of 41:1). Coupled with the relative size of the optic tecta (44.0 mm3) and olfactory bulbs (0.9 mm3), vision appears to play a major role in the survival of these deep-sea teleosts and emphasizes that ecological and behavioural strategies account for significant variation in sensory brain structure.
在阳光穿透极限以下的深海栖息地背景下,研究了一类具有中央凹的平头鱼科硬骨鱼的视觉相对重要性。康诺卡鱼属的大眼睛具有深陷的凸面中央凹,其内壁衬有缪勒细胞,这些细胞由中间丝的放射状轴突和水平突起组成。光感受器细胞(171.8×10³个视杆细胞/平方毫米)和视网膜神经节细胞(11.9×10³个细胞/平方毫米)的密度分别在中央凹斜坡和中央凹周围斜坡处达到峰值,中央到外周的梯度在3:1(光感受器)和超过20:1(神经节细胞)之间。颞侧视网膜中视网膜采样的显著增加,加上高总和率(13:1),表明中央凹视觉优化了双眼额前视野中的空间分辨能力和敏感度。细长的视神经乳头由500多个视神经乳头组成,它们在胚胎裂处汇合,在眼球后方形成一层薄的神经片。视神经分为两个轴突束;一个接收来自中央凹的输入(只有无髓鞘轴突),另一个接收来自非特殊视网膜区域的输入(25%的轴突有髓鞘),两者在到达中枢神经系统的视觉中枢时似乎是分开的。对视觉(总共63.4×10⁶个视杆光感受器)和嗅觉(总共15.24×10³个嗅神经轴突)输入的初级(一级)轴突通路数量进行比较,显示出明显的视觉偏向(比例为41:1)。再加上视顶盖(44.0立方毫米)和嗅球(0.9立方毫米)的相对大小,视觉似乎在这些深海硬骨鱼的生存中起主要作用,并强调生态和行为策略导致了感觉脑结构的显著差异。