Blaszczyk J, Shi G, Yan H, Ji X
Program in Structural Biology National Cancer Institute-Frederick Cancer Research and Development Center 21702, Frederick, MD 21702, USA.
Structure. 2000 Oct 15;8(10):1049-58. doi: 10.1016/s0969-2126(00)00502-5.
Folates are essential for life. Unlike mammals, most microorganisms must synthesize folates de novo. 6-Hydroxymethyl-7, 8-dihydropterin pyrophosphokinase (HPPK) catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate pathway, and therefore is an ideal target for developing novel antimicrobial agents. HPPK from Escherichia coli is a 158-residue thermostable protein that provides a convenient model system for mechanistic studies. Crystal structures have been reported for HPPK without bound ligand, containing an HP analog, and complexed with an HP analog, two Mg(2+) ions, and ATP.
We present the 1.25 A crystal structure of HPPK in complex with HP, two Mg(2+) ions, and AMPCPP (an ATP analog that inhibits the enzymatic reaction). This structure demonstrates that the enzyme seals the active center where the reaction occurs. The comparison with unligated HPPK reveals dramatic conformational changes of three flexible loops and many sidechains. The coordination of Mg(2+) ions has been defined and the roles of 26 residues have been derived.
HPPK-HP-MgAMPCPP mimics most closely the natural ternary complex of HPPK and provides details of protein-substrate interactions. The coordination of the two Mg(2+) ions helps create the correct geometry for the one-step reaction of pyrophosphoryl transfer, for which we suggest an in-line single displacement mechanism with some associative character in the transition state. The rigidity of the adenine-binding pocket and hydrogen bonds are responsible for adenosine specificity. The nonconserved residues that interact with the substrate might be responsible for the species-dependent properties of an isozyme.
叶酸对生命至关重要。与哺乳动物不同,大多数微生物必须从头合成叶酸。6-羟甲基-7,8-二氢蝶呤焦磷酸激酶(HPPK)催化焦磷酸从ATP转移至6-羟甲基-7,8-二氢蝶呤(HP),这是叶酸途径中的首个反应,因此是开发新型抗菌剂的理想靶点。来自大肠杆菌的HPPK是一种由158个残基组成的热稳定蛋白,为机理研究提供了一个便利的模型系统。已报道了无结合配体、含HP类似物以及与HP类似物、两个Mg(2+)离子和ATP复合的HPPK的晶体结构。
我们给出了与HP、两个Mg(2+)离子和AMPCPP(一种抑制酶促反应的ATP类似物)复合的HPPK的1.25 Å晶体结构。该结构表明该酶封闭了发生反应的活性中心。与未结合配体的HPPK比较揭示了三个柔性环和许多侧链的显著构象变化。确定了Mg(2+)离子的配位情况,并推导了26个残基的作用。
HPPK-HP-MgAMPCPP最接近地模拟了HPPK的天然三元复合物,并提供了蛋白质-底物相互作用的细节。两个Mg(2+)离子的配位有助于为焦磷酸转移的一步反应创造正确的几何构型,对此我们提出一种在过渡态具有一定缔合特征的线性单取代机制。腺嘌呤结合口袋的刚性和氢键负责腺苷特异性。与底物相互作用的非保守残基可能负责同工酶的物种依赖性特性。