Kordus Shannon Lynn, Baughn Anthony David
Department of Microbiology and Immunology , University of Minnesota , Minneapolis , MN , USA . Email:
Medchemcomm. 2019 May 8;10(6):880-895. doi: 10.1039/c9md00078j. eCollection 2019 Jun 1.
In prokaryotes and eukaryotes, folate (vitamin B) is an essential metabolic cofactor required for all actively growing cells. Specifically, folate serves as a one-carbon carrier in the synthesis of amino acids (such as methionine, serine, and glycine), -formylmethionyl-tRNA, coenzyme A, purines and thymidine. Many microbes are unable to acquire folates from their environment and rely on folate biosynthesis. In contrast, mammals lack the folate biosynthesis pathway and must obtain folate from commensal microbiota or the environment using proton-coupled folate transporters. The essentiality and dichotomy between mammalian and bacterial folate biosynthesis and utilization pathways make it an ideal drug target for the development of antimicrobial agents and cancer chemotherapeutics. In this minireview, we discuss general aspects of folate biosynthesis and the underlying mechanisms that govern susceptibility and resistance of organisms to antifolate drugs.
在原核生物和真核生物中,叶酸(维生素B)是所有活跃生长细胞所需的必需代谢辅助因子。具体而言,叶酸在氨基酸(如甲硫氨酸、丝氨酸和甘氨酸)、甲酰甲硫氨酰 - tRNA、辅酶A、嘌呤和胸腺嘧啶的合成中作为一碳载体。许多微生物无法从环境中获取叶酸,而是依赖叶酸生物合成。相比之下,哺乳动物缺乏叶酸生物合成途径,必须使用质子偶联叶酸转运蛋白从共生微生物群或环境中获取叶酸。哺乳动物和细菌叶酸生物合成及利用途径之间的必要性和差异使其成为开发抗菌剂和癌症化疗药物的理想药物靶点。在本综述中,我们讨论了叶酸生物合成的一般方面以及控制生物体对抗叶酸药物敏感性和抗性的潜在机制。