Nina M, Bernèche S, Roux B
Department of Chemistry, University of Montreal, Quebec, Canada.
Eur Biophys J. 2000;29(6):439-54. doi: 10.1007/pl00006649.
Prostaglandin H2 synthases (PGHS-1 and -2) are monotopic peripheral membrane proteins that catalyse the synthesis of prostaglandins in the arachidonate cascade. Picot et al. (1994) proposed that the enzyme is anchored to one leaflet of the bilayer by a membrane anchoring domain consisting of a right-handed spiral of amphipathic helices (residues 73-116) forming a planar motif. Two different computational approaches are used to examine the association of the PGHS-1 membrane anchoring domain with a membrane via the proposed mechanism. The electrostatic contribution to the free energy of solvation is obtained by solving numerically the finite-difference Poisson equation for the protein attached to a membrane represented as a planar slab of low dielectric. The nonpolar cavity formation and van der Waals contributions to the solvation free energy are assumed to be proportional to the water accessible surface area. Based on the optimum position determined from the continuum solvent model, two atomic models of the PGHS-1 anchoring domain associated with an explicit dimyristoylphosphatidylcholine (DMPC) bilayer differing by the thickness of the membrane bilayer were constructed. A total of 2 ns molecular dynamics simulation were performed to study the details of lipid-protein interactions at the microscopic level. In the simulations the lipid hydrocarbon chains interacting with the anchoring domain assume various shapes, suggesting that the plasticity of the membrane is significant. The hydrophobic residues in the membrane side of the helices interact with the hydrophobic membrane core, while the positively charged residues interact with the lipid polar headgroups to stabilize the anchoring of the membrane domain to the upper half of the bilayer. The phosphate headgroup of one DMPC molecule disposed at the center of the spiral formed by helices A, B, C and D interacts strongly with Arg120, a residue on helix D that has previously been identified as being important in the activity of PGHS-1. In the full enzyme structure, this position corresponds to the entrance of a long hydrophobic channel leading to the cyclooxygenase active site. These observations provide insights into the association of the arachidonic acid substrate to the cyclooxygenase active site of PGHS-1.
前列腺素H2合酶(PGHS - 1和 - 2)是单拓扑外周膜蛋白,可催化花生四烯酸级联反应中前列腺素的合成。皮科特等人(1994年)提出,该酶通过一个由两亲性螺旋(残基73 - 116)的右手螺旋形成平面基序的膜锚定结构域锚定在双层膜的一个小叶上。采用两种不同的计算方法,通过所提出的机制来研究PGHS - 1膜锚定结构域与膜的结合。通过数值求解附着在表示为低介电常数平面平板的膜上的蛋白质的有限差分泊松方程,获得溶剂化自由能的静电贡献。非极性空腔形成和范德华力对溶剂化自由能的贡献假定与水可及表面积成正比。基于从连续溶剂模型确定的最佳位置,构建了与明确的二肉豆蔻酰磷脂酰胆碱(DMPC)双层膜相关的PGHS - 1锚定结构域的两个原子模型,这两个模型在膜双层的厚度上有所不同。进行了总共2纳秒的分子动力学模拟,以在微观层面研究脂质 - 蛋白质相互作用的细节。在模拟中,与锚定结构域相互作用的脂质烃链呈现出各种形状,这表明膜的可塑性很显著。螺旋膜侧的疏水残基与疏水膜核心相互作用,而带正电荷的残基与脂质极性头部基团相互作用,以稳定膜结构域在双层膜上半部分的锚定。位于由螺旋A、B、C和D形成的螺旋中心的一个DMPC分子的磷酸头部基团与Arg120强烈相互作用,Arg120是螺旋D上的一个残基,先前已被确定在PGHS - 1的活性中起重要作用。在完整的酶结构中,这个位置对应于通向环氧化酶活性位点的长疏水通道的入口。这些观察结果为花生四烯酸底物与PGHS - 1环氧化酶活性位点的结合提供了见解。