Goedken E R, Marqusee S
Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA.
J Biol Chem. 2001 Mar 9;276(10):7266-71. doi: 10.1074/jbc.M009626200. Epub 2000 Nov 16.
Ribonuclease H (RNase H) selectively degrades the RNA strand of RNA.DNA hybrids in a divalent cation-dependent manner. Previous structural studies revealed a single Mg(2+) ion-binding site in Escherichia coli RNase HI. In the crystal structure of the related RNase H domain of human immunodeficiency virus reverse transcriptase, however, two Mn(2+) ions were observed suggesting a different mode of metal binding. E. coli RNase HI shows catalytic activity in the presence of Mg(2+) or Mn(2+) ions, but these two metals show strikingly different optimal concentrations. Mg(2+) ions are required in millimolar concentrations, but Mn(2+) ions are only required in micromolar quantities. Based upon the metal dependence of E. coli RNase HI activity, we proposed an activation/attenuation model in which one metal is required for catalysis, and binding of a second metal is inhibitory. We have now solved the co-crystal structure of E. coli RNase HI with Mn(2+) ions at 1.9-A resolution. Two octahedrally coordinated Mn(2+) ions are seen to bind to the enzyme-active site. Residues Asp-10, Glu-48, and Asp-70 make direct (inner sphere) coordination contacts to the first (activating) metal, whereas residues Asp-10 and Asp-134 make direct contacts to the second (attenuating) metal. This structure is consistent with biochemical evidence suggesting that two metal ions may bind RNase H but liganding a second ion inhibits RNase H activity.
核糖核酸酶H(RNase H)以二价阳离子依赖的方式选择性降解RNA-DNA杂交体中的RNA链。先前的结构研究揭示了大肠杆菌RNase HI中有一个单一的Mg(2+)离子结合位点。然而,在人类免疫缺陷病毒逆转录酶相关RNase H结构域的晶体结构中,观察到两个Mn(2+)离子,这表明存在不同的金属结合模式。大肠杆菌RNase HI在Mg(2+)或Mn(2+)离子存在时具有催化活性,但这两种金属的最佳浓度显著不同。Mg(2+)离子需要毫摩尔浓度,但Mn(2+)离子仅需要微摩尔量。基于大肠杆菌RNase HI活性对金属的依赖性,我们提出了一种激活/衰减模型,其中催化需要一种金属,而第二种金属的结合具有抑制作用。我们现在已经以1.9埃的分辨率解析了大肠杆菌RNase HI与Mn(2+)离子的共晶体结构。可以看到两个八面体配位的Mn(2+)离子与酶活性位点结合。Asp-10、Glu-48和Asp-70残基与第一个(激活)金属形成直接(内球)配位接触,而Asp-10和Asp-134残基与第二个(衰减)金属形成直接接触。这种结构与生化证据一致,表明两个金属离子可能结合RNase H,但第二个离子的配位会抑制RNase H活性。