Suppr超能文献

Fibroblast growth factor receptor 3 induces gene expression primarily through Ras-independent signal transduction pathways.

作者信息

Choi D Y, Toledo-Aral J J, Lin H Y, Ischenko I, Medina L, Safo P, Mandel G, Levinson S R, Halegoua S, Hayman M J

机构信息

Department of Molecular Genetics and Microbiology, Institute of Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA.

出版信息

J Biol Chem. 2001 Feb 16;276(7):5116-22. doi: 10.1074/jbc.M002959200. Epub 2000 Nov 17.

Abstract

Fibroblast growth factor receptors (FGFR) are widely expressed in many tissues and cell types, and the temporal expression of these receptors and their ligands play important roles in the control of development. There are four FGFR family members, FGFR-1-4, and understanding the ability of these receptors to transduce signals is central to understanding how they function in controlling differentiation and development. We have utilized signal transduction by FGF-1 in PC12 cells to compare the ability of FGFR-1 and FGFR-3 to elicit the neuronal phenotype. In PC12 cells FGFR-1 is much more potent in the induction of neurite outgrowth than FGFR-3. This correlated with the ability of FGFR-1 to induce robust and sustained activation of the Ras-dependent mitogen-activated protein kinase pathways. In contrast, FGFR-3 could not induce strong sustained Ras-dependent signals. In this study, we analyzed the ability of FGFR-3 to induce the expression of sodium channels, peripherin, and Thy-1 in PC12 cells because all three of these proteins are known to be induced via Ras-independent pathways. We determined that FGFR-3 was capable of inducing several Ras-independent gene expression pathways important to the neuronal phenotype to a level equivalent of that induced by FGFR-1. Thus, FGFR-3 elicits phenotypic changes primarily though activation of Ras-independent pathways in the absence of robust Ras-dependent signals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验