von Eggeling F, Davies H, Lomas L, Fiedler W, Junker K, Claussen U, Ernst G
Institute of Human Genetics and Anthropology, Jena, Germany.
Biotechniques. 2000 Nov;29(5):1066-70. doi: 10.2144/00295rr02.
Analysis of whole genomes to monitor specific changes in gene activation or changes in gene copy number due to perturbation has recently become possible using DNA chip technologies. It is now becoming apparent, however, that knowing the genetic sequence encoding a protein is not sufficient to predict the size or biological nature of a protein. This can be particularly important in cancer research where posttranslational modifications of a protein can specifically lead to the disease. To address this area, several proteomic tools have been developed. Currently the most widely used proteomics tool is two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), which can display protein expression patterns to a high degree of resolution. However, 2D-PAGE can be time consuming; the analysis is complicated and, compared with DNA techniques, is not very sensitive. Although some of these problems can be alleviated by using high-quality homogeneous samples, such as those generated using microdissection techniques, the quantity of sample is often limited and may take several days to generate sufficient material for a single 2D-PAGE analysis. As an alternative to 2D-PAGE, a preliminary study using a new technique was used to generate protein expression patterns from either whole tissue extracts or microdissected material. Surface-enhanced laser desorption and ionization allows the retention of proteins on a solid-phase chromatographic surface or ProteinChip Array with direct detection of retained proteins by time-of-flight mass spectrometry. Using this system, we analyzed tumor and normal tissue from head and neck cancer and microdissected melanoma to determine differentially expressed proteins. In particular, comparisons of the protein expression patterns from microdissected normal and tumor tissues indicated several differences, highlighting the importance of extremely defined tissue lysates for protein profiling.
近年来,利用DNA芯片技术对全基因组进行分析,以监测由于干扰导致的基因激活的特定变化或基因拷贝数的变化已成为可能。然而,现在越来越明显的是,仅仅知道编码一种蛋白质的基因序列并不足以预测该蛋白质的大小或生物学特性。这在癌症研究中可能尤为重要,因为蛋白质的翻译后修饰可能会特异性地导致疾病。为了解决这一领域的问题,已经开发了几种蛋白质组学工具。目前使用最广泛的蛋白质组学工具是二维聚丙烯酰胺凝胶电泳(2D-PAGE),它可以将蛋白质表达模式显示到很高的分辨率。然而,2D-PAGE可能很耗时;分析过程复杂,而且与DNA技术相比,灵敏度不是很高。尽管使用高质量的均匀样品(如使用显微切割技术获得的样品)可以缓解其中一些问题,但样品的数量往往有限,可能需要几天时间才能获得足够的材料用于一次2D-PAGE分析。作为2D-PAGE的替代方法,一项使用新技术的初步研究被用于从全组织提取物或显微切割材料中生成蛋白质表达模式。表面增强激光解吸电离技术可以使蛋白质保留在固相色谱表面或蛋白质芯片阵列上,并通过飞行时间质谱直接检测保留的蛋白质。利用这个系统,我们分析了头颈癌的肿瘤组织和正常组织以及显微切割的黑色素瘤,以确定差异表达的蛋白质。特别是,显微切割的正常组织和肿瘤组织的蛋白质表达模式比较显示出一些差异,突出了极其明确的组织裂解物在蛋白质谱分析中的重要性。