Hoshen M B, Heinrich R, Stein W D, Ginsburg H
Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
Parasitology. 2000 Sep;121 ( Pt 3):227-35. doi: 10.1017/s0031182099006368.
The development of malaria due to Plasmodium falciparum is a complex, multi-stage process. It is usually characterized by an exponential growth in the number of parasite-infected erythrocytes, followed by marked oscillations in this number with a period of 48 h, which are eventually dampened. This course of events has been the subject of various mathematical models. In this paper we propose a new mathematical model for the in-host asexual erythrocytic development of P. falciparum malaria. Synchronicity of the infection is shown to be an inherent feature of infection, irrespective of the duration of merozoite release from the liver. It will, therefore, cause periodic symptoms, as known in malaria patients. We also simulate the effects of an induced host immune response and show how the level of immunity affects the development of disease. The simulations fit well with the clinical observations. We show how infection can become asynchronous and discuss the effect of desynchronization on the circulating and total parasitaemia and demonstrate that synchronized broods will show parasitaemia fluctuations.
由恶性疟原虫引起的疟疾发展是一个复杂的多阶段过程。其通常的特征是受寄生虫感染的红细胞数量呈指数增长,随后该数量出现明显的波动,周期为48小时,最终趋于平稳。这一系列事件一直是各种数学模型的研究对象。在本文中,我们提出了一个新的数学模型,用于描述恶性疟原虫疟疾在宿主体内的无性红细胞发育过程。感染的同步性被证明是感染的一个固有特征,与裂殖子从肝脏释放的持续时间无关。因此,它会导致周期性症状,正如疟疾患者所熟知的那样。我们还模拟了诱导宿主免疫反应的效果,并展示了免疫水平如何影响疾病的发展。模拟结果与临床观察结果非常吻合。我们展示了感染如何变得不同步,并讨论了不同步对循环和总寄生虫血症的影响,证明同步的虫群会出现寄生虫血症波动。