Suppr超能文献

In vitro skin penetration and degradation of peptides and their analysis using a kinetic model.

作者信息

Ogiso T, Iwaki M, Tanino T, Yono A, Ito A

机构信息

Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

出版信息

Biol Pharm Bull. 2000 Nov;23(11):1346-51. doi: 10.1248/bpb.23.1346.

Abstract

The main purpose of this study was to estimate the net percutaneous absorption of physiologically active peptides in vitro. The degradation of two peptides, Leu-enkephalin (Enk) and Tyr-Pro-Leu-Gly amide (TPLG), during skin penetration and on the dermal side following penetration, and the prevention of degradation by some protease inhibitors, were investigated using rat skin in vitro. In addition, these permeation and degradation data were analyzed using a kinetic model. These peptides were rapidly degraded in the receptor fluid of a Franz diffusion cell (rate constant: 0.977 h(-1) for Enk and 0.250 h(-1) for TPLG). The addition of phenylmethylsulfonyl fluoride (PMSF) and phenanthroline and the pretreatment of skin with these inhibitors prevented almost completely any degradation in the receptor fluid and skin, respectively. The pretreatment of skin with PMSF and phenanthroline had no effect on the penetration of dextran (1000 Da). The degradation rate constant during skin penetration, calculated from the difference in the penetration rate constants via pretreated and untreated skins, was also high (0.037 h(-1) for Enk and 0.050 h(-1) for TPLG). A kinetic model including an input rate (zero-order), the permeation rate across the viable skin (first-order) and the degradation rate in skin (first-order) was sufficient to describe the apparent steady-state flux of the peptides through skin. We have, thus, established a method for measuring the true flux of peptides across skin in vitro and a kinetic model which simply describes the skin penetration of peptides.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验