Suppr超能文献

Contributions of individual nucleotides to tertiary binding of substrate by a Pneumocystis carinii group I intron.

作者信息

Disney M D, Gryaznov S M, Turner D H

机构信息

Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA.

出版信息

Biochemistry. 2000 Nov 21;39(46):14269-78. doi: 10.1021/bi001345x.

Abstract

Pneumocystis carinii is a mammalian pathogen that infects and kills immunocompromised hosts such as cancer and AIDS patients. The LSU rRNA precursor of P. carinii contains a conserved group I intron that is an attractive drug target because humans do not contain group I introns. The oligonucleotide r(AUGACU), whose sequence mimics the 3'-end of the 5'-exon, binds to a ribozyme derived from the intron with a K(d) of 5.2 nM, which is 61000-fold tighter than expected from base-pairing alone [Testa, S. M., Haidaris, G. C., Gigliotti, F., and Turner, D. H. (1997) Biochemistry 36, 9379-9385]. Thus, oligonucleotide binding is enhanced by tertiary interactions. To localize interactions that give rise to this tertiary stability, binding to the ribozyme has been measured as a function of oligonucleotide length and sequence. The results indicate that 4.3 kcal/mol of tertiary stability is due to a G.U pair that forms at the intron's splice junction. Eliminating nucleotides at the 5'-end of r(AUGACU) does not affect intron binding more than expected from differences in base-pairing until r((_)ACU), which binds much more tightly than expected. Adding a C at the 5'- or 3'-end that can potentially form a C-G pair with the target has little effect on binding affinity. Truncated oligonucleotides were tested for their ability to inhibit intron self-splicing via a suicide inhibition mechanism. The tetramer, r(()GACU), retains similar binding affinity and reactivity as the hexamer, r(AUGACU). Thus oligonucleotides as short as tetramers might serve as therapeutics that can use a suicide inhibition mechanism to inhibit self-splicing. Results with a phosphoramidate tetramer and thiophosphoramidate hexamer indicate that oligonucleotides with backbones stable to nuclease digestion retain favorable binding and reactivity properties.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验