Tynan J, Forde J, McMahon M, Mulcahy P
Department of Applied Biology and Chemistry, Institute of Technology Carlow, Kilkenny Road, Carlow, Ireland.
Protein Expr Purif. 2000 Dec;20(3):421-34. doi: 10.1006/prep.2000.1314.
This study is concerned with further development of the kinetic locking-on strategy for bioaffinity purification of NAD(+)-dependent dehydrogenases. Specifically, the synthesis of highly substituted N(6)-linked immobilized NAD(+) derivatives is described using a rapid solid-phase modular approach. Other modifications of the N(6)-linked immobilized NAD(+) derivative include substitution of the hydrophobic diaminohexane spacer arm with polar spacer arms (9 and 19.5 A) in an attempt to minimize nonbiospecific interactions. Analysis of the N(6)-linked NAD(+) derivatives confirm (i) retention of cofactor activity upon immobilization (up to 97%); (ii) high total substitution levels and high percentage accessibility levels when compared to S(6)-linked immobilized NAD(+) derivatives (also synthesized with polar spacer arms); (iii) short production times when compared to the preassembly approach to synthesis. Model locking-on bioaffinity chromatographic studies were carried out with bovine heart l-lactate dehydrogenase (l-LDH, EC 1.1.1.27), bakers yeast alcohol dehydrogenase (YADH, EC 1.1.1.1) and Sporosarcinia sp. l-phenylalanine dehydrogenase (l-PheDH, EC 1.4.1.20), using oxalate, hydroxylamine, and d-phenylalanine, respectively, as locking-on ligands. Surprisingly, two of these test NAD(+)-dependent dehydrogenases (lactate and alcohol dehydrogenase) were found to have a greater affinity for the more lowly substituted S(6)-linked immobilized cofactor derivatives than for the new N(6)-linked derivatives. In contrast, the NAD(+)-dependent phenylalanine dehydrogenase showed no affinity for the S(6)-linked immobilized NAD(+) derivative, but was locked-on strongly to the N(6)-linked immobilized derivative. That this locking-on is biospecific is confirmed by the observation that the enzyme failed to lock-on to an analogous N(6)-linked immobilized NADP(+) derivative in the presence of d-phenylalanine. This differential locking-on of NAD(+)-dependent dehydrogenases to N(6)-linked and S(6)-linked immobilized NAD(+) derivatives cannot be explained in terms of final accessible substitutions levels, but suggests fundamental differences in affinity of the three test enzymes for NAD(+) immobilized via N(6)-linkage as compared to thiol-linkage.
本研究关注用于NAD(+)依赖性脱氢酶生物亲和纯化的动力学锁定策略的进一步发展。具体而言,描述了使用快速固相模块方法合成高度取代的N(6)-连接的固定化NAD(+)衍生物。N(6)-连接的固定化NAD(+)衍生物的其他修饰包括用极性间隔臂(9和19.5 Å)取代疏水性二氨基己烷间隔臂,以尽量减少非生物特异性相互作用。对N(6)-连接的NAD(+)衍生物的分析证实:(i) 固定化后辅因子活性得以保留(高达97%);(ii) 与S(6)-连接的固定化NAD(+)衍生物(也用极性间隔臂合成)相比,总取代水平高且可及性百分比高;(iii) 与预组装合成方法相比,生产时间短。使用草酸盐、羟胺和d-苯丙氨酸分别作为锁定配体,对牛心l-乳酸脱氢酶(l-LDH,EC 1.1.1.27)、面包酵母乙醇脱氢酶(YADH,EC 1.1.1.1)和嗜盐芽孢杆菌属l-苯丙氨酸脱氢酶(l-PheDH,EC 1.4.1.20)进行了模型锁定生物亲和色谱研究。令人惊讶的是,发现其中两种测试的NAD(+)依赖性脱氢酶(乳酸脱氢酶和乙醇脱氢酶)对取代程度较低的S(6)-连接的固定化辅因子衍生物的亲和力比对新的N(6)-连接的衍生物的亲和力更大。相反,NAD(+)依赖性苯丙氨酸脱氢酶对S(6)-连接的固定化NAD(+)衍生物没有亲和力,但能强烈锁定在N(6)-连接的固定化衍生物上。在d-苯丙氨酸存在下,该酶无法锁定在类似的N(6)-连接的固定化NADP(+)衍生物上,这一观察结果证实了这种锁定是生物特异性的。NAD(+)依赖性脱氢酶对N(6)-连接和S(6)-连接的固定化NAD(+)衍生物的这种差异锁定不能用最终可及取代水平来解释,而是表明与硫醇连接相比,三种测试酶对通过N(6)-连接固定的NAD(+)的亲和力存在根本差异。