Yu D, Small M, Harrison RG, Diks C
Department of Physics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdomdagger.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Apr;61(4 Pt A):3750-6. doi: 10.1103/physreve.61.3750.
We describe an efficient algorithm which computes the Gaussian kernel correlation integral from noisy time series; this is subsequently used to estimate the underlying correlation dimension and noise level in the noisy data. The algorithm first decomposes the integral core into two separate calculations, reducing computing time from O(N2xN(b)) to O(N2+N(2)(b)). With other further improvements, this algorithm can speed up the calculation of the Gaussian kernel correlation integral by a factor of gamma approximately (2-10)N(b). We use typical examples to demonstrate the use of the improved Gaussian kernel algorithm.
我们描述了一种高效算法,该算法可从有噪声的时间序列中计算高斯核相关积分;随后,此积分用于估计有噪声数据中的潜在相关维度和噪声水平。该算法首先将积分核心分解为两个单独的计算,将计算时间从O(N2xN(b))减少到O(N2+N(2)(b))。通过其他进一步改进,该算法可将高斯核相关积分的计算速度提高约(2 - 10)N(b)倍。我们使用典型示例来演示改进后的高斯核算法的应用。