Suppr超能文献

高斯核算法在从噪声时间序列数据估计不变量和噪声水平中的高效实现。

Efficient implementation of the gaussian kernel algorithm in estimating invariants and noise level from noisy time series data.

作者信息

Yu D, Small M, Harrison RG, Diks C

机构信息

Department of Physics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdomdagger.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Apr;61(4 Pt A):3750-6. doi: 10.1103/physreve.61.3750.

Abstract

We describe an efficient algorithm which computes the Gaussian kernel correlation integral from noisy time series; this is subsequently used to estimate the underlying correlation dimension and noise level in the noisy data. The algorithm first decomposes the integral core into two separate calculations, reducing computing time from O(N2xN(b)) to O(N2+N(2)(b)). With other further improvements, this algorithm can speed up the calculation of the Gaussian kernel correlation integral by a factor of gamma approximately (2-10)N(b). We use typical examples to demonstrate the use of the improved Gaussian kernel algorithm.

摘要

我们描述了一种高效算法,该算法可从有噪声的时间序列中计算高斯核相关积分;随后,此积分用于估计有噪声数据中的潜在相关维度和噪声水平。该算法首先将积分核心分解为两个单独的计算,将计算时间从O(N2xN(b))减少到O(N2+N(2)(b))。通过其他进一步改进,该算法可将高斯核相关积分的计算速度提高约(2 - 10)N(b)倍。我们使用典型示例来演示改进后的高斯核算法的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验