Suppr超能文献

欠阻尼约瑟夫森阶梯的弗洛凯指数:与离散正弦-戈登方程预测结果的比较

Floquet exponents of underdamped josephson ladders: A comparison with predictions of the discrete sine-gordon equation.

作者信息

Trees BR, Hussain N

机构信息

Department of Physics and Astronomy, Ohio Wesleyan University, Delaware, Ohio 43015, USA.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jun;61(6 Pt A):6415-25. doi: 10.1103/physreve.61.6415.

Abstract

We calculate Floquet exponents for phase-locked solutions in ladder arrays of Josephson junctions in zero external field. We assume a resistively and capacitively shunted junction (RCSJ) model, and we allow for critical current anisotropy between the horizontal and vertical junctions. The ladders range in size from 5 to 30 plaquettes and are biased along the rungs with uniform dc bias currents. The Floquet exponents quantify the stability of the solutions and are calculated numerically for the RCSJ model as a function of junction capacitance (beta(c)) as well as critical current anisotropy (Lambda). We also model the array with the discrete sine-Gordon (DSG) equation, and we are able to calculate the exponents analytically in that case. We find the analytic results from the DSG equation agree quantitatively with the numerical results from the RCSJ model over a wide range of beta(c) and Lambda values and even agree qualitatively for beta(c)-->1 and Lambda-->0. Based on the analytic result we argue that perturbations in the array are damped by the small-angle phase oscillations of the underlying lattice (the "phonons" of the lattice), and like a classical harmonic oscillator with damping, each phonon mode has a crossover (as a function of decreasing beta(c) or Lambda) from underdamped to overdamped dynamics. Such crossover behavior is clearly visible in the results for the Floquet exponents and is manifested as a maximum in the Floquet exponent as a function of the junction capacitance. This intriguing result speaks to the opportunity, in principle, of tuning the capacitance such as to optimize the stability of the phase-locked solutions.

摘要

我们计算了零外场下约瑟夫森结梯形阵列中锁相解的弗洛凯指数。我们采用电阻电容并联结(RCSJ)模型,并考虑水平和垂直结之间的临界电流各向异性。梯形阵列的尺寸范围为5到30个格点,并沿梯级施加均匀的直流偏置电流。弗洛凯指数量化了解的稳定性,并针对RCSJ模型作为结电容(β(c))以及临界电流各向异性(Λ)的函数进行数值计算。我们还用离散正弦-戈登(DSG)方程对阵列进行建模,在这种情况下我们能够解析计算指数。我们发现,在很宽的β(c)和Λ值范围内,DSG方程的解析结果与RCSJ模型的数值结果在定量上一致,甚至在β(c)→1和Λ→0时在定性上也一致。基于解析结果,我们认为阵列中的微扰被底层晶格的小角度相位振荡(晶格的“声子”)所阻尼,并且类似于具有阻尼的经典谐振子,每个声子模式都有一个从欠阻尼到过阻尼动力学的转变(作为β(c)或Λ减小的函数)。这种转变行为在弗洛凯指数的结果中清晰可见,并表现为弗洛凯指数作为结电容的函数出现最大值。这个有趣的结果表明,原则上有机会通过调整电容来优化锁相解的稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验