Keanini RG
Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jun;61(6 Pt A):6606-20. doi: 10.1103/physreve.61.6606.
Second-order streaming in a thin fluid layer driven by one or two opposed, tangentially oscillating wavy walls is theoretically investigated. In contrast to the well-studied problem of oscillatory flow past a stationary boundary, the present problem is subject to a nonhomogeneous second-order boundary velocity condition. A combination of steady Reynolds stresses and boundary forcing thus drives the streaming flow; indeed, under most conditions, boundary-forced flow dominates Reynolds-stress-driven flow. The first part of the paper examines parametric effects on second-order flow structure. Under low-Reynolds-stress conditions and during single-boundary forcing, flow structure remains essentially independent of all parameters, including the Stokes layer thickness, the fluid layer thickness, and the forcing wave form. Three approximations to the full second-order solution, valid under low-Reynolds-stress conditions, are used to explain these results. In the case of dual-boundary forcing, no corresponding universal behaviors are observed; flow structure exhibits sensitivity to all problem parameters. The second part of the paper investigates particle transport during quasistatic second-order streaming. Here, slow, superposed, large-amplitude oscillations of one wall produce the time-dependent, quasisteady flows of interest. Collective particle motion in the direction of large-scale boundary displacement and filamentary motion in the opposite direction, features consistent with transport in traveling waves [E. Moses and V. Steinberg, Phys. Rev. Lett. 60, 2030 (1988)], characterize short-time transport. Long-time or asymptotic transport, in contrast, is characterized by particle attraction or repulsion to or from period-one elliptic points and attraction toward limit cycles on the Poincare map.
对由一两个相对的、切向振荡的波浪壁驱动的薄流体层中的二阶流动进行了理论研究。与经过固定边界的振荡流这一已充分研究的问题不同,当前问题受到非齐次二阶边界速度条件的约束。因此,稳定雷诺应力和边界强迫的组合驱动了流动;实际上,在大多数情况下,边界强迫流动主导了雷诺应力驱动的流动。本文的第一部分研究了对二阶流动结构的参数影响。在低雷诺应力条件下以及单边界强迫期间,流动结构基本上与所有参数无关,包括斯托克斯层厚度、流体层厚度和强迫波形。在低雷诺应力条件下有效的全二阶解的三种近似被用来解释这些结果。在双边界强迫的情况下,未观察到相应的普遍行为;流动结构对所有问题参数都表现出敏感性。本文的第二部分研究了准静态二阶流动过程中的颗粒输运。在这里,一个壁的缓慢、叠加的大振幅振荡产生了感兴趣的随时间变化的准稳态流动。在大规模边界位移方向上的集体颗粒运动以及在相反方向上的丝状运动,这些特征与行波中的输运一致[E. 摩西和V. 斯坦伯格,《物理评论快报》60, 2030 (1988)],表征了短时间输运。相比之下,长时间或渐近输运的特征是颗粒对周期一椭圆点的吸引或排斥以及对庞加莱映射上极限环的吸引。