Höfler K, Schwarzer S
Institut für Computeranwendungen 1, Universität Stuttgart, 70569 Stuttgart, Germany.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jun;61(6 Pt B):7146-60. doi: 10.1103/physreve.61.7146.
Building on an idea of Fogelson and Peskin [J. Comput. Phys. 79, 50 (1988)] we describe the implementation and verification of a simulation technique for systems of non-Brownian particles in fluids at Reynolds numbers up to about 20 on the particle scale. This direct simulation technique fills a gap between simulations in the viscous regime and high-Reynolds-number modeling. It also combines sufficient computational accuracy with numerical efficiency and allows studies of several thousand, in principle arbitrarily shaped, extended and hydrodynamically interacting particles on regular work stations. We verify the algorithm in two and three dimensions for (i) single falling particles and (ii) a fluid flowing through a bed of fixed spheres. In the context of sedimentation we compute the volume fraction dependence of the mean sedimentation velocity. The results are compared with experimental and other numerical results both in the viscous and inertial regime and we find very satisfactory agreement.
基于福格尔森和佩斯金的一个想法[《计算物理杂志》79, 50 (1988)],我们描述了一种模拟技术的实现与验证,该技术用于在粒子尺度上雷诺数高达约20的流体中非布朗粒子系统。这种直接模拟技术填补了粘性区域模拟与高雷诺数建模之间的空白。它还将足够的计算精度与数值效率相结合,并允许在常规工作站上研究数千个原则上任意形状、扩展且流体动力学相互作用的粒子。我们在二维和三维中针对(i)单个下落粒子和(ii)流体流经固定球体床层的情况验证了该算法。在沉降的背景下,我们计算了平均沉降速度对体积分数的依赖性。将结果与粘性和惯性区域的实验结果及其他数值结果进行了比较,我们发现吻合得非常令人满意。