Braunstein LA, Buceta RC, Archubi CD, Costanza G
Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Sep;62(3 Pt B):3920-4. doi: 10.1103/physreve.62.3920.
We present an analytical continuous equation for the Tang and Leschhorn model [Phys. Rev. A 45, R8309 (1992)] derived from their microscopic rules using a regularization procedure. As well in this approach, the nonlinear term (nablah)(2) arises naturally from the microscopic dynamics even if the continuous equation is not the Kardar-Parisi-Zhang equation [Phys. Rev. Lett. 56, 889 (1986)] with quenched noise (QKPZ). Our equation is similar to a QKPZ equation but with multiplicative quenched and thermal noise. The numerical integration of our equation reproduces all the scaling exponents of the directed percolation depinning model.
我们给出了一个适用于Tang和Leschhorn模型[《物理评论A》45, R8309 (1992)]的解析连续方程,该方程是通过正则化过程从其微观规则推导得出的。在这种方法中,即使连续方程不是具有淬火噪声的Kardar-Parisi-Zhang方程[《物理评论快报》56, 889 (1986)](QKPZ),非线性项(▽h)^2也自然地源于微观动力学。我们的方程类似于QKPZ方程,但具有乘性淬火噪声和热噪声。对方程进行数值积分可重现定向渗流脱钉模型的所有标度指数。