Suppr超能文献

具有多次崩塌的自组织临界性沙堆模型的理论结果。

Theoretical results for sandpile models of self-organized criticality with multiple topplings.

作者信息

Paczuski M, Bassler KE

机构信息

Department of Mathematics, Huxley Building, Imperial College of Science, Technology, and Medicine, London SW7 2BZ, United Kingdom.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Oct;62(4 Pt B):5347-52. doi: 10.1103/physreve.62.5347.

Abstract

We study a directed stochastic sandpile model of self-organized criticality, which exhibits multiple topplings, putting it in a separate universality class from the exactly solved model of Dhar and Ramaswamy. We show that in the steady-state all stable states are equally likely. Using this fact, we explicitly derive a discrete dynamical equation for avalanches on the lattice. By coarse graining we arrive at a continuous Langevin equation for the propagation of avalanches and calculate all the critical exponents characterizing avalanches. The avalanche equation is similar to the Edwards-Wilkinson equation, but with a noise amplitude that is a threshold function of the local avalanche activity, or interface height, leading to a stable absorbing state when the avalanche dies.

摘要

我们研究了一个自组织临界性的有向随机沙堆模型,该模型呈现出多次崩塌,使其处于与Dhar和Ramaswamy的精确求解模型不同的普适类中。我们表明,在稳态下,所有稳定状态的可能性相同。利用这一事实,我们明确推导了晶格上雪崩的离散动力学方程。通过粗粒化,我们得到了雪崩传播的连续朗之万方程,并计算了表征雪崩的所有临界指数。雪崩方程类似于Edwards-Wilkinson方程,但噪声幅度是局部雪崩活动或界面高度的阈值函数,当雪崩停止时会导致一个稳定的吸收态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验