Allahyarov E, Löwen H
Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Oct;62(4 Pt B):5542-56. doi: 10.1103/physreve.62.5542.
The effective interaction between two parallel strands of helical biomolecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6 A it can be both attractive and repulsive. Furthermore, we report a nonmonotonic behavior of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the biomolecules is suitably renormalized.
利用电解质“原始”模型的计算机模拟,计算了两条平行螺旋生物分子链(如脱氧核糖核酸(DNA))之间的有效相互作用。特别地,我们研究了一个简单的B-DNA模型,该模型明确纳入了其作为双螺旋结构的电荷模式。施加在分子上的有效力和有效扭矩取决于中心距离和相对取向。分析并计算了单价抗衡离子的非线性屏蔽对不同盐浓度下这些力和扭矩的贡献。结果,我们发现力的符号敏感地取决于相对取向。对于分子间距离小于6埃的情况,它既可以是吸引性的,也可以是排斥性的。此外,我们报告了有效力随盐浓度增加的非单调行为。这两个特征都无法在线性屏蔽理论中描述。另一方面,对于大距离,只要对生物分子的电荷进行适当的重整化,结果就与线性屏蔽理论一致。