Suppr超能文献

[基于常规收集参数的康复后工作能力预测预后模型的开发与验证]

[Development and validation of a prognosis model for predicting work capacity after rehabilitation based on routinely collected parameters].

作者信息

Muche R, Rösch M, Flierl S, Alt B, Jacobi E, Gaus W

机构信息

Abteilung Biometrie und Medizinische Dokumentation, Universität Ulm.

出版信息

Rehabilitation (Stuttg). 2000 Oct;39(5):262-7. doi: 10.1055/s-2000-7862.

Abstract

For efficient rehabilitation it is important to identify, as early as possible, the patients likely to be successfully returned to work after rehabilitation. The aim of this pilot study was to develop a statistical model for predicting this return as reliably as possible. The model uses only information readily available at the beginning of rehabilitation. A multiple regression analysis with backward elimination was used from a routine data base and identified 8 variables of prognostic value. The model offers a comfortable possibility to predict the probability of return to work of a patient on the basis of routinely registered data. The prognosis was found correct in 68% of those returning to work after rehabilitation (sensitivity) and in 80% of those who did not (specificity). Further work to improve the model for prognosis in rehabilitation research is considered reasonable.

摘要

为了实现高效康复,尽早识别出康复后有可能成功重返工作岗位的患者至关重要。这项试点研究的目的是开发一种统计模型,尽可能可靠地预测这种重返工作的情况。该模型仅使用康复开始时 readily available 的信息。从常规数据库中进行了带有向后消除法的多元回归分析,并确定了 8 个具有预后价值的变量。该模型提供了一种便利的可能性,即根据常规登记的数据来预测患者重返工作岗位的概率。在康复后重返工作岗位的患者中,有 68%的患者预后被发现是正确的(敏感性),而在未重返工作岗位的患者中,有 80%的患者预后被发现是正确的(特异性)。在康复研究中进一步改进预后模型的工作被认为是合理的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验