Suppr超能文献

Motor-evoked potentials in response to fatiguing grip exercise in multiple sclerosis patients.

作者信息

Petajan J H, White A T

机构信息

Department of Neurology, University of Utah School of Medicine, UT, Salt Lake City, USA.

出版信息

Clin Neurophysiol. 2000 Dec;111(12):2188-95. doi: 10.1016/s1388-2457(00)00469-7.

Abstract

OBJECTIVE

This study examined central and peripheral effects of fatiguing exercise (3 min maximal grip) in healthy controls (n=10) and multiple sclerosis (MS) subjects with weakness, MS-W (n=16) and normal motor function, MS-NM (n=16) in the studied extremity.

METHOD

Transcranial magnetic stimulation (TMS) was used to assess resting and facilitated motor-evoked potentials (MEPs) of abductor pollicus brevis (APB) and flexor carpi radialis (FCR) muscles before and after fatiguing exercise. Exercise-induced depletion and recovery of phosphocreatine (PCr) were measured using (31)P magnetic resonance spectroscopy ((31)PMRS) in FCR.

RESULTS AND CONCLUSION

MS subjects demonstrated significantly lower peak force and a faster decline in force than controls. Contralateral muscle activation (hand grip) before the fatigue protocol resulted in significantly increased MEP amplitudes in all groups. Contralateral hand grip following fatiguing exercise resulted in significantly higher MEP amplitudes in controls and MS-NM subjects, but not MS-W subjects. Fatiguing exercise resulted in prolonged central motor conduction time (CMCT) in MS subjects, but not controls. No group differences in PCr depletion or resynthesis were observed. All groups demonstrated significant post-exercise depression (PED) of MEP amplitude that persisted beyond the time course of PCr recovery, indicating fatigue was central in origin. MS subjects were less able than controls to increase cortical excitability using contralateral muscle activation following fatiguing exercise, possibly indicating impaired conduction in the corpus callosum.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验