Suppr超能文献

Motor-evoked potentials in response to fatiguing grip exercise in multiple sclerosis patients.

作者信息

Petajan J H, White A T

机构信息

Department of Neurology, University of Utah School of Medicine, UT, Salt Lake City, USA.

出版信息

Clin Neurophysiol. 2000 Dec;111(12):2188-95. doi: 10.1016/s1388-2457(00)00469-7.

Abstract

OBJECTIVE

This study examined central and peripheral effects of fatiguing exercise (3 min maximal grip) in healthy controls (n=10) and multiple sclerosis (MS) subjects with weakness, MS-W (n=16) and normal motor function, MS-NM (n=16) in the studied extremity.

METHOD

Transcranial magnetic stimulation (TMS) was used to assess resting and facilitated motor-evoked potentials (MEPs) of abductor pollicus brevis (APB) and flexor carpi radialis (FCR) muscles before and after fatiguing exercise. Exercise-induced depletion and recovery of phosphocreatine (PCr) were measured using (31)P magnetic resonance spectroscopy ((31)PMRS) in FCR.

RESULTS AND CONCLUSION

MS subjects demonstrated significantly lower peak force and a faster decline in force than controls. Contralateral muscle activation (hand grip) before the fatigue protocol resulted in significantly increased MEP amplitudes in all groups. Contralateral hand grip following fatiguing exercise resulted in significantly higher MEP amplitudes in controls and MS-NM subjects, but not MS-W subjects. Fatiguing exercise resulted in prolonged central motor conduction time (CMCT) in MS subjects, but not controls. No group differences in PCr depletion or resynthesis were observed. All groups demonstrated significant post-exercise depression (PED) of MEP amplitude that persisted beyond the time course of PCr recovery, indicating fatigue was central in origin. MS subjects were less able than controls to increase cortical excitability using contralateral muscle activation following fatiguing exercise, possibly indicating impaired conduction in the corpus callosum.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验