Suppr超能文献

用于识别接受放射治疗的晚期头颈癌患者预后指标的汉明聚类技术。

Hamming clustering techniques for the identification of prognostic indices in patients with advanced head and neck cancer treated with radiation therapy.

作者信息

Paoli G, Muselli M, Bellazzi R, Corvó R, Liberati D, Foppiano F

机构信息

Fisica Sanitaria, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy.

出版信息

Med Biol Eng Comput. 2000 Sep;38(5):483-6. doi: 10.1007/BF02345741.

Abstract

The aim of the study is to demonstrate the usefulness of a new, non-linear classifier method, called Hamming clustering (HC), in selecting prognostic variables affecting overall survival in patients with head and neck cancer. In particular, the aim is to identify whether tumour proliferation parameters can be predictive factors of response in a set of 115 patients that receive either alternating chemo-radiotherapy or accelerated or conventional radiotherapy. HC is able to generate a set of understandable rules underlying the study objective; it can also select a subset of input variables that represent good prognostic factors. HC has been compared with other standard classifiers, providing better results in terms of classification accuracy. In particular, HC obtains the best accuracy of 74.8% (sensitivity of 51.1% and specificity of 91.2%) about survival. The rules found show that, besides the classical, well-known variables concerning the tumour dimension and the involved lymphonodes, some biological parameters, such as DNA ploidy, are also useful as predictive factors.

摘要

本研究的目的是证明一种名为汉明聚类(HC)的新型非线性分类器方法在选择影响头颈癌患者总生存的预后变量方面的有效性。具体而言,目的是确定在一组接受交替放化疗、加速放疗或传统放疗的115例患者中,肿瘤增殖参数是否可以作为反应的预测因素。HC能够生成一组基于研究目标的可理解规则;它还可以选择代表良好预后因素的输入变量子集。HC已与其他标准分类器进行比较,在分类准确性方面提供了更好的结果。特别是,HC在生存方面获得了74.8%的最佳准确率(敏感性为51.1%,特异性为91.2%)。所发现的规则表明,除了与肿瘤大小和受累淋巴结相关的经典且广为人知的变量外,一些生物学参数,如DNA倍体,也可作为预测因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验