Chamberlin R V
Department of Physics and Astronomy, Arizona State University, Tempe 85287-1504, USA.
Nature. 2000 Nov 16;408(6810):337-9. doi: 10.1038/35042534.
Two separate theories are often used to characterize the paramagnetic properties of ferromagnetic materials. At temperatures T well above the Curie temperature, Tc (where the transition from paramagnetic to ferromagnetic behaviour occurs), classical mean-field theory yields the Curie-Weiss law for the magnetic susceptibility: X(T) infinity 1/(T - Weiss constant), where Weiss constant is the Weiss constant. Close to Tc, however, the standard mean-field approach breaks down so that better agreement with experimental data is provided by critical scaling theory: X(T) infinity 1/(T - Tc)gamma, where gamma is a scaling exponent. But there is no known model capable of predicting the measured values of gamma nor its variation among different substances. Here I use a mean-field cluster model based on finite-size thermostatistics to extend the range of mean-field theory, thereby eliminating the need for a separate scaling regime. The mean-field approximation is justified by using a kinetic-energy term to maintain the microcanonical ensembles. The model reproduces the Curie-Weiss law at high temperatures, but the classical Weiss transition at Tc = Weiss constant is suppressed by finite-size effects. Instead, the fraction of clusters with a specific amount of order diverges at Tc, yielding a transition that is mathematically similar to Bose-Einstein condensation. At all temperatures above Tc, the model matches the measured magnetic susceptibilities of crystalline EuO, Gd, Co and Ni, thus providing a unified picture for both the critical-scaling and Curie-Weiss regimes.
通常使用两种不同的理论来描述铁磁材料的顺磁特性。在温度T远高于居里温度Tc(即发生从顺磁行为到铁磁行为转变的温度)时,经典平均场理论给出了磁 susceptibility的居里 - 外斯定律:χ(T) ∝ 1/(T - 外斯常数),其中外斯常数就是外斯常数。然而,在接近Tc时,标准平均场方法失效,因此临界标度理论能更好地与实验数据相符:χ(T) ∝ 1/(T - Tc)^γ,其中γ是一个标度指数。但目前还没有已知的模型能够预测γ的测量值及其在不同物质间的变化。在此,我使用基于有限尺寸热统计学的平均场团簇模型来扩展平均场理论的适用范围,从而无需单独的标度区域。通过使用动能项来维持微正则系综,平均场近似是合理的。该模型在高温下重现了居里 - 外斯定律,但在Tc = 外斯常数处的经典外斯转变被有限尺寸效应抑制。相反,具有特定有序量的团簇分数在Tc处发散,产生了一种在数学上类似于玻色 - 爱因斯坦凝聚的转变。在高于Tc的所有温度下,该模型与晶体EuO、Gd、Co和Ni的测量磁susceptibility相匹配,从而为临界标度区和居里 - 外斯区提供了一个统一的图景。