Bose Sankhadeep, Floris Andrea, Rajendiran Mangaiyarkarasi, D'Aguanno Bruno
School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
Department of Chemistry, School of Natural Sciences, University of Lincoln, Brayford Pool, LN6 7TS Lincoln, U.K.
ACS Omega. 2025 Apr 9;10(15):15321-15333. doi: 10.1021/acsomega.4c11379. eCollection 2025 Apr 22.
We analyze the mechanisms leading to thermodynamic stable states and isobaric phase transitions in finite nonhomogeneous nanosystems using classical molecular dynamics. We consider systems ranging from nano- to macroscopic scales and focus on spherical Lennard-Jones nanoparticles, in both one- and two-phase equilibria. In particular, we investigate how these systems' macroscopic behaviors evolve as their size increases. Our findings unveil that nonhomogeneous stable states are governed by spatial variations in intensive variables, contrary to standard thermodynamics of homogeneous systems, where equilibrium is described by extensive variables. Crucially, we demonstrate that nonhomogeneous intensive variables persistently diverge from homogeneous systems' predictions, even as the system size increases. Our calculations show that one-phase equilibrium is the direct consequence of the spatial variations of these intensive variables. In the two-phase equilibrium, such variations generate isobaric phase transitions across temperature intervals, through a continuous sequence that includes three-phase states. These temperature ranges vanish with increasing size, challenging the assumption that homogeneous systems are the asymptotic limit of finite nonhomogeneous systems. Our findings highlight the significance of boundary effects in understanding thermodynamic stability and equilibrium mechanisms, marking a departure from standard thermodynamic models that neglect these variations.
我们使用经典分子动力学分析有限非均匀纳米系统中导致热力学稳定状态和等压相变的机制。我们考虑从纳米尺度到宏观尺度的系统,并聚焦于处于单相和两相平衡的球形 Lennard-Jones 纳米颗粒。特别地,我们研究这些系统的宏观行为如何随着其尺寸的增加而演变。我们的研究结果表明,非均匀稳定状态由强度变量的空间变化所支配,这与均匀系统的标准热力学相反,在均匀系统中平衡是由广延变量描述的。至关重要的是,我们证明即使系统尺寸增加,非均匀强度变量仍持续偏离均匀系统的预测。我们的计算表明,单相平衡是这些强度变量空间变化的直接结果。在两相平衡中,这种变化通过包括三相状态的连续序列,在温度区间内产生等压相变。这些温度范围随着尺寸的增加而消失,这对均匀系统是有限非均匀系统渐近极限的假设提出了挑战。我们的研究结果突出了边界效应在理解热力学稳定性和平衡机制中的重要性,这与忽略这些变化的标准热力学模型不同。