Donahue J K, Heldman A W, Fraser H, McDonald A D, Miller J M, Rade J J, Eschenhagen T, Marbán E
The Institute for Molecular Cardiobiology, Johns Hopkins University School of Medicine, Ross 844, 720 N. Rutland Ave., Baltimore, Maryland 21205 USA.
Nat Med. 2000 Dec;6(12):1395-8. doi: 10.1038/82214.
Modern treatment of cardiac arrhythmias is limited to pharmacotherapy, radiofrequency ablation, or implantable devices. Antiarrhythmic medications suppress arrhythmias, but their systemic effects are often poorly tolerated and their proarrhythmic tendencies increase mortality. Radiofrequency ablation can cure only a limited number of arrhythmias. Implantable devices can be curative for bradyarrhythmias and lifesaving for tachyarrhythmias, but require a lifetime commitment to repeated procedures, are a significant expense, and may lead to severe complications. One possibility is the use of gene therapy as an antiarrhythmic strategy. As an initial attempt to explore this option, we focused on genetic modification of the atrioventricular node. First, we developed an intracoronary perfusion model for gene delivery, building on our previous work in isolated cardiac myocytes and hearts perfused ex vivo. Using this method, we infected porcine hearts with Adbetagal (recombinant adenovirus expressing Escherichia coli beta-galactosidase) or with AdGi (adenovirus encoding the Galphai2 subunit). We hypothesized that excess Galphai2 would mimic the effects of beta-adreneric antagonists, in effect creating a localized beta-blockade. Galphai2 overexpression suppressed baseline atrioventricular conduction and slowed the heart rate during atrial fibrillation without producing complete heart block. In contrast, expression of the reporter gene beta-galactosidase had no electrophysiological effects. Our results demonstrate the feasibility of using myocardial gene transfer strategies to treat common arrhythmias.
现代心律失常的治疗方法仅限于药物治疗、射频消融或植入式装置。抗心律失常药物可抑制心律失常,但其全身效应往往耐受性较差,且促心律失常倾向会增加死亡率。射频消融仅能治愈有限数量的心律失常。植入式装置可治愈缓慢性心律失常并挽救快速性心律失常患者的生命,但需要终身反复进行手术,费用高昂,且可能导致严重并发症。一种可能性是使用基因治疗作为抗心律失常策略。作为探索这一选择的初步尝试,我们专注于房室结的基因改造。首先,我们基于之前在分离的心肌细胞和离体灌注心脏方面的工作,开发了一种用于基因递送的冠状动脉内灌注模型。使用这种方法,我们用Adbetagal(表达大肠杆菌β-半乳糖苷酶的重组腺病毒)或AdGi(编码Galphai2亚基的腺病毒)感染猪心脏。我们假设过量的Galphai2会模拟β-肾上腺素能拮抗剂的作用,实际上产生局部β-受体阻滞。Galphai2过表达可抑制基线房室传导,并在房颤期间减慢心率,而不会产生完全性心脏传导阻滞。相比之下,报告基因β-半乳糖苷酶的表达没有电生理效应。我们的结果证明了使用心肌基因转移策略治疗常见心律失常的可行性。