Coronado E, Galán-Mascarós J R, Gómez-García C J, Laukhin V
Instituto de Ciencia Molecular, Universidad de Valencia, Burjasot, Spain.
Nature. 2000 Nov 23;408(6811):447-9. doi: 10.1038/35044035.
Crystal engineering--the planning and construction of crystalline supramolecular architectures from modular building blocks--permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity, ferromagnetism and nonlinear optical properties. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this type of 'bi-functionality' targets hybrid organic/inorganic crystals comprising two functional sub-lattices exhibiting distinct properties. In this way, the organic pi-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and its derivatives, which form the basis of most known molecular conductors and superconductors, have been combined with molecular magnetic anions, yielding predominantly materials with conventional semiconducting or conducting properties, but also systems that are both superconducting and paramagnetic. But interesting bulk magnetic properties fail to develop, owing to the discrete nature of the inorganic anions. Another strategy for achieving cooperative magnetism involves insertion of functional bulky cations into a polymeric magnetic anion, such as the bimetallic oxalato complex [MnIICrIII(C2O4)3]-, but only insoluble powders have been obtained in most cases. Here we report the synthesis of single crystals formed by infinite sheets of this magnetic coordination polymer interleaved with layers of conducting BEDT-TTF cations, and show that this molecule-based compound displays ferromagnetism and metallic conductivity.
晶体工程——即从模块化构建单元规划和构建晶体超分子结构——使得人们能够合理设计出具有诸如导电性和超导性、铁磁性和非线性光学性质等技术上有用行为的功能性分子材料。由于在同一晶格中存在两种协同性质可能会导致新的物理现象和新颖的应用,因此一个特别有吸引力的目标是设计出具有两种性质的分子材料,而这两种性质在具有连续晶格的传统无机固体中很难或不可能结合。创建这种“双功能性”的一种有前景的策略是以包含两个具有不同性质的功能性子晶格的有机/无机杂化晶体为目标。通过这种方式,构成大多数已知分子导体和超导体基础的有机π电子给体双(乙二硫基)四硫富瓦烯(BEDT-TTF)及其衍生物已与分子磁性阴离子结合,主要产生具有传统半导体或导电性质的材料,但也产生了兼具超导性和顺磁性的体系。然而,由于无机阴离子的离散性质,有趣的体磁性质未能显现出来。实现协同磁性的另一种策略涉及将功能性大体积阳离子插入聚合物磁性阴离子中,例如双金属草酸根配合物[MnIIICrIII(C2O4)3]-,但在大多数情况下仅获得了不溶性粉末。在此我们报告了由这种磁性配位聚合物的无限片层与导电的BEDT-TTF阳离子层交错形成的单晶的合成,并表明这种基于分子的化合物表现出铁磁性和金属导电性。