Vilkaitis G, Dong A, Weinhold E, Cheng X, Klimasauskas S
Institute of Biotechnology, Laboratory of Biological DNA Modification, LT-2028 Vilnius, Lithuania.
J Biol Chem. 2000 Dec 8;275(49):38722-30. doi: 10.1074/jbc.m005278200.
DNA cytosine-5-methyltransferase HhaI recognizes the GCGC sequence and flips the inner cytosine out of DNA helix and into the catalytic site for methylation. The 5'-phosphate of the flipped out cytosine is in contact with the conserved Thr-250 from the target recognition domain. We have produced 12 mutants of Thr-250 and examined their methylation potential in vivo. Six active mutants were subjected to detailed biochemical and structural studies. Mutants with similar or smaller side chains (Ser, Cys, and Gly) are very similar to wild-type enzyme in terms of steady-state kinetic parameters k(cat), K(m)(DNA), K(m)(AdoMet). In contrast, the mutants with bulkier side chains (Asn, Asp, and His) show increased K(m) values for both substrates. Fluorescence titrations and stopped-flow kinetic analysis of interactions with duplex oligonucleotides containing 2-aminopurine at the target base position indicate that the T250G mutation leads to a more polar but less solvent-accessible position of the flipped out target base. The x-ray structure of the ternary M. HhaI(T250G).DNA.AdoHcy complex shows that the target cytosine is locked in the catalytic center of enzyme. The space created by the mutation is filled by water molecules and the adjacent DNA backbone atoms dislocate slightly toward the missing side chain. In aggregate, our results suggest that the side chain of Thr-250 is involved in constraining the conformation the DNA backbone and the target base during its rotation into the catalytic site of enzyme.
DNA胞嘧啶-5-甲基转移酶HhaI识别GCGC序列,并将内部的胞嘧啶从DNA螺旋中翻转出来,进入催化位点进行甲基化。翻转出来的胞嘧啶的5'-磷酸与来自靶标识别结构域的保守苏氨酸-250接触。我们构建了12个苏氨酸-250的突变体,并在体内检测了它们的甲基化潜力。对6个活性突变体进行了详细的生化和结构研究。具有相似或较小侧链(丝氨酸、半胱氨酸和甘氨酸)的突变体在稳态动力学参数k(cat)、K(m)(DNA)、K(m)(AdoMet)方面与野生型酶非常相似。相比之下,具有较大侧链(天冬酰胺、天冬氨酸和组氨酸)的突变体对两种底物的K(m)值都有所增加。对与在靶碱基位置含有2-氨基嘌呤的双链寡核苷酸相互作用的荧光滴定和停流动力学分析表明,T250G突变导致翻转出来的靶碱基处于一个极性更强但溶剂可及性更低的位置。HhaI(T250G).DNA.AdoHcy三元复合物的x射线结构表明,靶标胞嘧啶被锁定在酶的催化中心。突变产生的空间被水分子填充,相邻的DNA主链原子向缺失的侧链方向略有移位。总的来说,我们的结果表明,苏氨酸-250的侧链在靶标碱基旋转进入酶的催化位点的过程中,参与限制DNA主链和靶标碱基的构象。