Suppr超能文献

具有共享共递质的投射神经元从同一神经回路引发不同的运动模式。

Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit.

作者信息

Wood D E, Stein W, Nusbaum M P

机构信息

Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA.

出版信息

J Neurosci. 2000 Dec 1;20(23):8943-53. doi: 10.1523/JNEUROSCI.20-23-08943.2000.

Abstract

Specificity in the actions of different modulatory neurons is often attributed to their having distinct cotransmitter complements. We are assessing the validity of this hypothesis with the stomatogastric nervous system of the crab Cancer borealis. In this nervous system, the stomatogastric ganglion (STG) contains a multifunctional network that generates the gastric mill and pyloric rhythms. Two identified projection neurons [modulatory proctolin neuron (MPN) and modulatory commissural neuron 1 (MCN1)] that innervate the STG and modulate these rhythms contain GABA and the pentapeptide proctolin, but only MCN1 contains Cancer borealis tachykinin-related peptide (CabTRP Ia). Selective activation of each projection neuron elicits different rhythms from the STG. MPN elicits only a pyloric rhythm, whereas MCN1 elicits a distinct pyloric rhythm as well as a gastric mill rhythm. We tested the degree to which CabTRP Ia distinguishes the actions of MCN1 and MPN. To this end, we used the tachykinin receptor antagonist Spantide I to eliminate the actions of CabTRP Ia. With Spantide I present, MCN1 no longer elicited the gastric mill rhythm and the resulting pyloric rhythm was changed. Although this rhythm was more similar to the MPN-elicited pyloric rhythm, these rhythms remained different. Thus, CabTRP Ia partially confers the differences in rhythm generation resulting from MPN versus MCN1 activation. This result suggests that different projection neurons may use the same cotransmitters differently to elicit distinct pyloric rhythms. It also supports the hypothesis that different projection neurons use a combination of strategies, including using distinct cotransmitter complements, to elicit different outputs from the same neuronal network.

摘要

不同调制神经元作用的特异性通常归因于它们具有不同的共递质组合。我们正在用北方黄道蟹的口胃神经系统评估这一假设的有效性。在这个神经系统中,口胃神经节(STG)包含一个产生胃磨和幽门节律的多功能网络。两个已确定的投射神经元[调制促肠肌肽神经元(MPN)和调制连合神经元1(MCN1)]支配STG并调节这些节律,它们含有γ-氨基丁酸(GABA)和五肽促肠肌肽,但只有MCN1含有北方黄道蟹速激肽相关肽(CabTRP Ia)。每个投射神经元的选择性激活会引发STG产生不同的节律。MPN仅引发幽门节律,而MCN1则引发独特的幽门节律以及胃磨节律。我们测试了CabTRP Ia区分MCN1和MPN作用的程度。为此,我们使用速激肽受体拮抗剂Spantide I来消除CabTRP Ia的作用。在存在Spantide I的情况下,MCN1不再引发胃磨节律,并且产生的幽门节律发生了变化。尽管这种节律与MPN引发的幽门节律更相似,但这些节律仍然不同。因此,CabTRP Ia部分赋予了MPN与MCN1激活所导致的节律产生差异。这一结果表明,不同的投射神经元可能以不同方式使用相同的共递质来引发不同的幽门节律。它还支持了这样一种假设,即不同的投射神经元使用多种策略的组合,包括使用不同的共递质组合,来从同一神经元网络中引发不同的输出。

相似文献

1
Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit.
J Neurosci. 2000 Dec 1;20(23):8943-53. doi: 10.1523/JNEUROSCI.20-23-08943.2000.
2
Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron.
Eur J Neurosci. 2007 Sep;26(5):1148-65. doi: 10.1111/j.1460-9568.2007.05744.x.
3
Extracellular peptidase activity tunes motor pattern modulation.
J Neurosci. 2002 May 15;22(10):4185-95. doi: 10.1523/JNEUROSCI.22-10-04185.2002.
4
Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network.
J Neurosci. 1999 Jul 1;19(13):5449-63. doi: 10.1523/JNEUROSCI.19-13-05449.1999.
5
Distinct functions for cotransmitters mediating motor pattern selection.
J Neurosci. 1999 Aug 15;19(16):6774-83. doi: 10.1523/JNEUROSCI.19-16-06774.1999.
6
Motor pattern selection via inhibition of parallel pathways.
J Neurosci. 1997 Jul 1;17(13):4965-75. doi: 10.1523/JNEUROSCI.17-13-04965.1997.
8
Modulators with convergent cellular actions elicit distinct circuit outputs.
J Neurosci. 2001 Jun 1;21(11):4050-8. doi: 10.1523/JNEUROSCI.21-11-04050.2001.
9
Modulation of rhythmic motor activity by pyrokinin peptides.
J Neurophysiol. 2007 Jan;97(1):579-95. doi: 10.1152/jn.00772.2006. Epub 2006 Oct 25.
10
Two novel tachykinin-related peptides from the nervous system of the crab Cancer borealis.
J Exp Biol. 1997 Sep;200(Pt 17):2279-94. doi: 10.1242/jeb.200.17.2279.

引用本文的文献

1
Neuropeptide inactivation regulates egg-laying behavior to influence reproductive health in Caenorhabditis elegans.
Curr Biol. 2024 Oct 21;34(20):4715-4728.e4. doi: 10.1016/j.cub.2024.09.059. Epub 2024 Oct 11.
2
Coupling between fast and slow oscillator circuits in is temperature-compensated.
Elife. 2021 Feb 4;10:e60454. doi: 10.7554/eLife.60454.
3
Mass Spectrometry Quantification, Localization, and Discovery of Feeding-Related Neuropeptides in .
ACS Chem Neurosci. 2021 Feb 17;12(4):782-798. doi: 10.1021/acschemneuro.1c00007. Epub 2021 Feb 1.
5
General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems.
Front Neural Circuits. 2019 Jan 21;12:117. doi: 10.3389/fncir.2018.00117. eCollection 2018.
6
Similarities and differences in circuit responses to applied Gly-SIFamide and peptidergic (Gly-SIFamide) neuron stimulation.
J Neurophysiol. 2019 Mar 1;121(3):950-972. doi: 10.1152/jn.00567.2018. Epub 2019 Jan 16.
7
Graded Transmission without Action Potentials Sustains Rhythmic Activity in Some But Not All Modulators That Activate the Same Current.
J Neurosci. 2018 Oct 17;38(42):8976-8988. doi: 10.1523/JNEUROSCI.2632-17.2018. Epub 2018 Sep 5.
8
Newly Identified Aplysia SPTR-Gene Family-Derived Peptides: Localization and Function.
ACS Chem Neurosci. 2018 Aug 15;9(8):2041-2053. doi: 10.1021/acschemneuro.7b00513. Epub 2018 Mar 27.
9
10
Functional consequences of neuropeptide and small-molecule co-transmission.
Nat Rev Neurosci. 2017 Jul;18(7):389-403. doi: 10.1038/nrn.2017.56. Epub 2017 Jun 8.

本文引用的文献

1
GABA and responses to GABA in the stomatogastric ganglion of the crab Cancer borealis.
J Exp Biol. 2000 Jul;203(Pt 14):2075-92. doi: 10.1242/jeb.203.14.2075.
3
Distinct functions for cotransmitters mediating motor pattern selection.
J Neurosci. 1999 Aug 15;19(16):6774-83. doi: 10.1523/JNEUROSCI.19-16-06774.1999.
4
Monoamine control of the pacemaker kernel and cycle frequency in the lobster pyloric network.
J Neurosci. 1999 Aug 1;19(15):6712-22. doi: 10.1523/JNEUROSCI.19-15-06712.1999.
5
Coordination of fast and slow rhythmic neuronal circuits.
J Neurosci. 1999 Aug 1;19(15):6650-60. doi: 10.1523/JNEUROSCI.19-15-06650.1999.
6
Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network.
J Neurosci. 1999 Jul 1;19(13):5449-63. doi: 10.1523/JNEUROSCI.19-13-05449.1999.
8
Tachykinin-related peptides in invertebrates: a review.
Peptides. 1999;20(1):141-58. doi: 10.1016/s0196-9781(98)00142-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验