Biology Department and Volen Center, Brandeis University, Waltham, United States.
Elife. 2021 Feb 4;10:e60454. doi: 10.7554/eLife.60454.
Coupled oscillatory circuits are ubiquitous in nervous systems. Given that most biological processes are temperature-sensitive, it is remarkable that the neuronal circuits of poikilothermic animals can maintain coupling across a wide range of temperatures. Within the stomatogastric ganglion (STG) of the crab, , the fast pyloric rhythm (1 Hz) and the slow gastric mill rhythm (0.1 Hz) are precisely coordinated at ~11°C such that there is an integer number of pyloric cycles per gastric mill cycle (integer coupling). Upon increasing temperature from 7°C to 23°C, both oscillators showed similar temperature-dependent increases in cycle frequency, and integer coupling between the circuits was conserved. Thus, although both rhythms show temperature-dependent changes in rhythm frequency, the processes that couple these circuits maintain their coordination over a wide range of temperatures. Such robustness to temperature changes could be part of a toolbox of processes that enables neural circuits to maintain function despite global perturbations.
耦合振荡电路在神经系统中无处不在。鉴于大多数生物过程对温度敏感,但令人惊讶的是,变温动物的神经元回路能够在很宽的温度范围内保持耦合。在螃蟹的口胃神经节(STG)中,快速幽门节律(1 Hz)和缓慢胃磨节律(0.1 Hz)在~11°C 时精确协调,使得每个胃磨周期都有整数个幽门周期(整数耦合)。当温度从 7°C 升高到 23°C 时,两个振荡器的周期频率都表现出相似的温度依赖性增加,并且电路之间的整数耦合得以保持。因此,尽管两个节律都表现出对节律频率的温度依赖性变化,但耦合这些电路的过程在很宽的温度范围内保持它们的协调。这种对温度变化的鲁棒性可能是使神经回路在全球干扰下保持功能的一系列过程的一部分。