Izumi M, Vaughan O A, Hutchison C J, Gilbert D M
Biodesign Research Group, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama, 351-0198, Japan.
Mol Biol Cell. 2000 Dec;11(12):4323-37. doi: 10.1091/mbc.11.12.4323.
The nuclear lamina is an important determinant of nuclear architecture. Mutations in A-type but not B-type lamins cause a range of human genetic disorders, including muscular dystrophy. Dominant mutations in nuclear lamin proteins have been shown to disrupt a preformed lamina structure in Xenopus egg extracts. Here, a series of deletion mutations in lamins A and B1 were evaluated for their ability to disrupt lamina structure in Chinese hamster ovary cells. Deletions of either the lamin A "head" domain or the C-terminal CaaX domain formed intranuclear aggregates and resulted in the disruption of endogenous lamins A/C but not lamins B1/B2. By contrast, "head-less" lamin B1 localized to the nuclear rim with no detectable effect on endogenous lamins, whereas lamin B1 CaaX domain deletions formed intranuclear aggregates, disrupting endogenous lamins A/C but not lamins B1/B2. Filter binding assays revealed that a head/CaaX domain lamin B1 mutant interacted much more strongly with lamins A/C than with lamins B1/B2. Regulated induction of this mutant in stable cell lines resulted in the rapid elimination of all detectable lamin A protein, whereas lamin C was trapped in a soluble form within the intranuclear aggregates. In contrast to results in Xenopus egg extracts, dominant negative lamin B1 (but not lamin A) mutants trapped replication proteins involved in both the initiation and elongation phases of replication but did not effect cellular growth rates or the assembly of active replication centers. We conclude that elimination of the CaaX domain in lamin B1 and elimination of either the CaaX or head domain in lamin A constitute dominant mutations that can disrupt A-type but not B-type lamins, highlighting important differences in the way that A- and B-type lamins are integrated into the lamina.
核纤层是核结构的重要决定因素。A型而非B型核纤层蛋白的突变会引发一系列人类遗传疾病,包括肌肉萎缩症。核纤层蛋白中的显性突变已被证明会破坏非洲爪蟾卵提取物中预先形成的核纤层结构。在此,我们评估了一系列A型和B1型核纤层蛋白的缺失突变体在中国仓鼠卵巢细胞中破坏核纤层结构的能力。删除核纤层蛋白A的“头部”结构域或C端CaaX结构域会形成核内聚集体,并导致内源性核纤层蛋白A/C而非核纤层蛋白B1/B2的破坏。相比之下,“无头”核纤层蛋白B1定位于核边缘,对内源性核纤层蛋白没有可检测到的影响,而核纤层蛋白B1的CaaX结构域缺失会形成核内聚集体,破坏内源性核纤层蛋白A/C而非核纤层蛋白B1/B2。滤膜结合试验表明,一种头部/CaaX结构域的核纤层蛋白B1突变体与核纤层蛋白A/C的相互作用比与核纤层蛋白B1/B2的相互作用强烈得多。在稳定细胞系中对该突变体进行调控诱导会导致所有可检测到的核纤层蛋白A迅速消失,而核纤层蛋白C则以可溶形式被困在核内聚集体中。与非洲爪蟾卵提取物中的结果相反,显性负性核纤层蛋白B1(而非核纤层蛋白A)突变体捕获了参与复制起始和延伸阶段的复制蛋白,但不影响细胞生长速率或活性复制中心的组装。我们得出结论,核纤层蛋白B1中CaaX结构域的缺失以及核纤层蛋白A中CaaX或头部结构域的缺失构成了显性突变,可破坏A型而非B型核纤层蛋白,突出了A型和B型核纤层蛋白整合到核纤层中的方式的重要差异。