Zhang J, Haddad G G, Xia Y
Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, LMP 3107, New Haven, CT 06520, USA.
Brain Res. 2000 Dec 8;885(2):143-53. doi: 10.1016/s0006-8993(00)02906-1.
Recent observations from our laboratory have led us to hypothesize that delta-opioid receptors may play a role in neuronal protection against hypoxic/ischemic or glutamate excitotocity. To test our hypothesis in this work, we used two independent methods, i.e., "same field quantification" of morphologic criteria and a biochemical assay of lactate dehydrogenase (LDH) release (an index of cellular injury). We used neuronal cultures from rat neocortex and studied whether (1) glutamate induces neuronal injury as a function of age and (2) activation of opioid receptors (delta, mu and kappa subtypes) protects neurons from glutamate-induced injury. Our results show that glutamate induced neuronal injury and cell death and this was dependent on glutamate concentration, exposure period and days in culture. At 4 days, glutamate (up to 10 mM, 4 h-exposure) did not cause apparent injury. After 8-10 days in culture, neurons exposed to a much lower dose of glutamate (100 microM, 4 h) showed substantial neuronal injury as assessed by morphologic criteria (>65%, n=23, P<0.01) and LDH release (n=16, P<0. 001). Activation of delta-opioid receptors with 10 microM DADLE reduced glutamate-induced injury by almost half as assessed by the same criteria (morphologic criteria, n=21, P<0.01; LDH release, n=16, P<0.01). Naltrindole (10 microM), a delta-opioid receptor antagonist, completely blocked the DADLE protective effect. Administration of mu- and kappa-opioid receptor agonists (DAMGO and U50488H respectively, 5-10 microM) did not induce appreciable neuroprotection. Also, mu- or kappa-opioid receptor antagonists had no appreciable effect on the glutamate-induced injury. This study demonstrates that activation of neuronal delta-opioid receptors, but not mu- and kappa-opioid receptors, protect neocortical neurons from glutamate excitotoxicity.
我们实验室最近的观察结果使我们推测,δ-阿片受体可能在神经元抵御缺氧/缺血或谷氨酸兴奋性毒性方面发挥作用。为了在这项研究中验证我们的假设,我们使用了两种独立的方法,即形态学标准的“同视野定量”和乳酸脱氢酶(LDH)释放的生化检测(细胞损伤指标)。我们使用大鼠新皮质的神经元培养物,研究了(1)谷氨酸是否作为年龄的函数诱导神经元损伤,以及(2)阿片受体(δ、μ和κ亚型)的激活是否能保护神经元免受谷氨酸诱导的损伤。我们的结果表明,谷氨酸诱导神经元损伤和细胞死亡,这取决于谷氨酸浓度、暴露时间和培养天数。在第4天,谷氨酸(高达10 mM,暴露4小时)未引起明显损伤。培养8 - 10天后,暴露于低得多剂量谷氨酸(100 μM,4小时)的神经元,根据形态学标准(>65%,n = 23,P<0.01)和LDH释放(n = 16,P<0.001)评估,显示出大量神经元损伤。用10 μM DADLE激活δ-阿片受体,根据相同标准评估,可将谷氨酸诱导的损伤减少近一半(形态学标准,n = 21,P<0.01;LDH释放,n = 16,P<0.01)。δ-阿片受体拮抗剂纳曲吲哚(10 μM)完全阻断了DADLE的保护作用。给予μ-和κ-阿片受体激动剂(分别为DAMGO和U50488H,5 - 10 μM)未诱导出明显的神经保护作用。此外,μ-或κ-阿片受体拮抗剂对谷氨酸诱导的损伤没有明显影响。这项研究表明,激活神经元δ-阿片受体而非μ-和κ-阿片受体可保护新皮质神经元免受谷氨酸兴奋性毒性作用。