Ostermeier A M, Schlösser B, Schwender D, Sutor B
Institute of Physiology, University of Munich, Munich, Germany.
Anesthesiology. 2000 Oct;93(4):1053-63. doi: 10.1097/00000542-200010000-00029.
The mechanism underlying the depressant effect of opioids on neuronal activity within the neocortex is still not clear. Three modes of action have been suggested: (1) inhibition by activation of postsynaptic potassium channels, (2) interaction with postsynaptic glutamate receptors, and (3) presynaptic inhibition of glutamate release. To address this issue, the authors investigated the effects of mu- and delta-receptor agonists on excitatory postsynaptic currents (EPSCs) and on membrane properties of neocortical neurons.
Intracellular recordings were performed in rat brain slices. Stimulus-evoked EPSCs mediated by different glutamate receptor subtypes were pharmacologically isolated, and opioids were applied by addition to the bathing medium. Possible postsynaptic interactions between glutamate and opioid receptors were investigated using microiontophoretic application of glutamate on neurons functionally isolated from presynaptic input.
delta-Receptor activation by d-Ala2-d-Leu5-enkephalin (DADLE) reduced the amplitudes of EPSCs by maximum 60% in a naltrindole-reversible manner (EC50: 6-15 nm). In 30-40% of the neurons investigated, higher concentrations (0.1-1 micrometer) of DADLE activated small outward currents. The mu-receptor selective agonist d-Ala2-N-MePhe5-Gly5-ol-enkephalin (0.1-1 micrometer) depressed the amplitudes of EPSCs by maximum 30% without changes in postsynaptic membrane properties. In the absence of synaptic transmission, inward currents induced by microiontophoretic application of glutamate were not affected by DADLE.
Activation of mu- and delta-opioid receptors depresses glutamatergic excitatory transmission evoked in neocortical neurons by presynaptic inhibition. A weak activation of a postsynaptic potassium conductance becomes evident only at high agonist concentrations. There is no evidence for a postsynaptic interaction between glutamate and opioid receptors.
阿片类药物对新皮质内神经元活动产生抑制作用的机制仍不清楚。已提出三种作用模式:(1)通过激活突触后钾通道产生抑制作用;(2)与突触后谷氨酸受体相互作用;(3)对谷氨酸释放的突触前抑制作用。为解决这一问题,作者研究了μ受体和δ受体激动剂对兴奋性突触后电流(EPSCs)以及新皮质神经元膜特性的影响。
在大鼠脑片上进行细胞内记录。通过药理学方法分离出由不同谷氨酸受体亚型介导的刺激诱发的EPSCs,并将阿片类药物添加到灌流液中。使用微量离子电泳法将谷氨酸应用于与突触前输入功能隔离的神经元,研究谷氨酸和阿片类受体之间可能的突触后相互作用。
D - Ala2 - d - Leu5 - 脑啡肽(DADLE)激活δ受体可使EPSCs幅度最大降低60%,且这种作用可被纳曲吲哚逆转(半数有效浓度:6 - 15 nM)。在30% - 40%被研究的神经元中,较高浓度(0.1 - 1 μM)的DADLE可激活小的外向电流。μ受体选择性激动剂D - Ala2 - N - MePhe5 - Gly5 - 脑啡肽(0.1 - 1 μM)可使EPSCs幅度最大降低30%,而突触后膜特性无变化。在无突触传递的情况下,微量离子电泳应用谷氨酸诱发的内向电流不受DADLE影响。
μ受体和δ阿片受体的激活通过突触前抑制作用抑制新皮质神经元中谷氨酸能兴奋性传递。仅在高浓度激动剂作用下,突触后钾电导的微弱激活才变得明显。没有证据表明谷氨酸和阿片受体之间存在突触后相互作用。