Suppr超能文献

一种计算生物学中的参数优化方法。

A method for parameter optimization in computational biology.

作者信息

Rosen J B, Phillips A T, Oh S Y, Dill K A

机构信息

Computer Science and Engineering Department, University of California at San Diego, San Diego, California 92093 USA.

出版信息

Biophys J. 2000 Dec;79(6):2818-24. doi: 10.1016/S0006-3495(00)76520-9.

Abstract

Models in computational biology, such as those used in binding, docking, and folding, are often empirical and have adjustable parameters. Because few of these models are yet fully predictive, the problem may be nonoptimal choices of parameters. We describe an algorithm called ENPOP (energy function parameter optimization) that improves-and sometimes optimizes-the parameters for any given model and for any given search strategy that identifies the stable state of that model. ENPOP iteratively adjusts the parameters simultaneously to move the model global minimum energy conformation for each of m different molecules as close as possible to the true native conformations, based on some appropriate measure of structural error. A proof of principle is given for two very different test problems. The first involves three different two-dimensional model protein molecules having 12 to 37 monomers and four parameters in common. The parameters converge to the values used to design the model native structures. The second problem involves nine bumpy landscapes, each having between 4 and 12 degrees of freedom. For the three adjustable parameters, the globally optimal values are known in advance. ENPOP converges quickly to the correct parameter set.

摘要

计算生物学中的模型,如用于结合、对接和折叠的模型,通常是经验性的且具有可调整参数。由于这些模型中很少有能完全预测的,问题可能在于参数选择不够优化。我们描述了一种名为ENPOP(能量函数参数优化)的算法,它可以改进——有时甚至优化——任何给定模型以及任何用于识别该模型稳定状态的给定搜索策略的参数。ENPOP基于某种适当的结构误差度量,迭代地同时调整参数,以使m个不同分子中每个分子的模型全局最小能量构象尽可能接近真实的天然构象。针对两个非常不同的测试问题给出了原理证明。第一个问题涉及三个不同的二维模型蛋白质分子,它们有12至37个单体且共有四个参数。这些参数收敛到用于设计模型天然结构的值。第二个问题涉及九个崎岖景观,每个景观有4至12个自由度。对于三个可调整参数,其全局最优值是预先已知的。ENPOP能快速收敛到正确的参数集。

相似文献

5
Protein structure optimization with a "Lamarckian" ant colony algorithm.用“拉马克式”蚁群算法优化蛋白质结构。
IEEE/ACM Trans Comput Biol Bioinform. 2013 Nov-Dec;10(6):1548-52. doi: 10.1109/TCBB.2013.125.
6
A simple iterative approach to parameter optimization.一种用于参数优化的简单迭代方法。
J Comput Biol. 2000;7(3-4):483-501. doi: 10.1089/106652700750050907.

本文引用的文献

6
From Levinthal to pathways to funnels.从莱文索尔模型到途径再到漏斗模型。
Nat Struct Biol. 1997 Jan;4(1):10-9. doi: 10.1038/nsb0197-10.
9
How optimization of potential functions affects protein folding.势能函数的优化如何影响蛋白质折叠。
Proc Natl Acad Sci U S A. 1996 May 14;93(10):4984-9. doi: 10.1073/pnas.93.10.4984.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验