Rosen J B, Phillips A T, Oh S Y, Dill K A
Computer Science and Engineering Department, University of California at San Diego, San Diego, California 92093 USA.
Biophys J. 2000 Dec;79(6):2818-24. doi: 10.1016/S0006-3495(00)76520-9.
Models in computational biology, such as those used in binding, docking, and folding, are often empirical and have adjustable parameters. Because few of these models are yet fully predictive, the problem may be nonoptimal choices of parameters. We describe an algorithm called ENPOP (energy function parameter optimization) that improves-and sometimes optimizes-the parameters for any given model and for any given search strategy that identifies the stable state of that model. ENPOP iteratively adjusts the parameters simultaneously to move the model global minimum energy conformation for each of m different molecules as close as possible to the true native conformations, based on some appropriate measure of structural error. A proof of principle is given for two very different test problems. The first involves three different two-dimensional model protein molecules having 12 to 37 monomers and four parameters in common. The parameters converge to the values used to design the model native structures. The second problem involves nine bumpy landscapes, each having between 4 and 12 degrees of freedom. For the three adjustable parameters, the globally optimal values are known in advance. ENPOP converges quickly to the correct parameter set.
计算生物学中的模型,如用于结合、对接和折叠的模型,通常是经验性的且具有可调整参数。由于这些模型中很少有能完全预测的,问题可能在于参数选择不够优化。我们描述了一种名为ENPOP(能量函数参数优化)的算法,它可以改进——有时甚至优化——任何给定模型以及任何用于识别该模型稳定状态的给定搜索策略的参数。ENPOP基于某种适当的结构误差度量,迭代地同时调整参数,以使m个不同分子中每个分子的模型全局最小能量构象尽可能接近真实的天然构象。针对两个非常不同的测试问题给出了原理证明。第一个问题涉及三个不同的二维模型蛋白质分子,它们有12至37个单体且共有四个参数。这些参数收敛到用于设计模型天然结构的值。第二个问题涉及九个崎岖景观,每个景观有4至12个自由度。对于三个可调整参数,其全局最优值是预先已知的。ENPOP能快速收敛到正确的参数集。