Suppr超能文献

使用基因芯片数据的半自动计算分析检测缺失的基因组DNA。

Detection of deleted genomic DNA using a semiautomated computational analysis of GeneChip data.

作者信息

Salamon H, Kato-Maeda M, Small P M, Drenkow J, Gingeras T R

机构信息

Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California 94305, USA.

出版信息

Genome Res. 2000 Dec;10(12):2044-54. doi: 10.1101/gr.gr-1529r.

Abstract

Genomic diversity within and between populations is caused by single nucleotide mutations, changes in repetitive DNA systems, recombination mechanisms, and insertion and deletion events. The contribution of these sources to diversity, whether purely genetic or of phenotypic consequence, can only be investigated if we have the means to quantitate and characterize diversity in many samples. With the advent of complete sequence characterization of representative genomes of different species, the possibility of developing protocols to screen for genetic polymorphism across entire genomes is actively being pursued. The large numbers of measurements such approaches yield demand that we pay careful attention to the numerical analysis of data. In this paper we present a novel application of an Affymetrix GeneChip to perform genome-wide screens for deletion polymorphism. A high-density oligonucleotide array formatted for mRNA expression and targeted at a fully sequenced 4.4-million-base pair Mycobacterium tuberculosis standard strain genome was adapted to compare genomic DNA. Hybridization intensities to 111,000 probe pairs (perfect complement and mismatch complement) were measured for genomic DNA from a clinical strain and from a vaccine organism. Because individual probe-pair hybridization intensities exhibit limited sensitivity/specificity characteristics to detect deletions, data-analytical methodology to exploit measurements from multiple probes in tandem locations across the genome was developed. The TSTEP (Tandem Set Terminal Extreme Probability) algorithm designed specifically to analyze the tandem hybridization measurements data was applied and shown to discover genomic deletions with high sensitivity. The TSTEP algorithm provides a foundation for similar efforts to characterize deletions in many hybridization measures in similar-sized and larger genomes. Issues relating to the design of genome content screening experiments and the implications of these methods for studying population genomics and the evolution of genomes are discussed.

摘要

群体内部和群体之间的基因组多样性是由单核苷酸突变、重复DNA系统的变化、重组机制以及插入和缺失事件引起的。只有当我们有办法对许多样本中的多样性进行定量和表征时,才能研究这些来源对多样性的贡献,无论这种贡献是纯遗传的还是具有表型后果的。随着不同物种代表性基因组完整序列表征的出现,人们正在积极探索开发用于全基因组遗传多态性筛选方案的可能性。这类方法产生的大量测量数据要求我们仔细关注数据的数值分析。在本文中,我们展示了Affymetrix基因芯片在全基因组缺失多态性筛选中的新应用。一种为mRNA表达设计的高密度寡核苷酸阵列,其靶向于一个已完全测序的440万个碱基对的结核分枝杆菌标准菌株基因组,被改编用于比较基因组DNA。测量了来自临床菌株和疫苗菌株的基因组DNA与111,000个探针组(完全互补和错配互补)的杂交强度。由于单个探针组杂交强度在检测缺失方面表现出有限的灵敏度/特异性特征,因此开发了一种数据分析方法,以利用来自基因组串联位置多个探针的测量数据。专门设计用于分析串联杂交测量数据的TSTEP(串联集末端极端概率)算法被应用,并显示出能以高灵敏度发现基因组缺失。TSTEP算法为在类似大小和更大基因组的许多杂交测量中表征缺失的类似工作提供了基础。文中还讨论了与基因组内容筛选实验设计相关的问题,以及这些方法对群体基因组学研究和基因组进化的意义。

相似文献

引用本文的文献

2
An African origin for .一个……的非洲起源
Evol Med Public Health. 2020 Jan 31;2020(1):49-59. doi: 10.1093/emph/eoaa005. eCollection 2020.

本文引用的文献

3
High density synthetic oligonucleotide arrays.高密度合成寡核苷酸阵列
Nat Genet. 1999 Jan;21(1 Suppl):20-4. doi: 10.1038/4447.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验