Muscheler R, Beer J, Wagner G, Finkel R C
Department of Surface Waters, EAWAG, Dübendorf, Switzerland.
Nature. 2000 Nov 30;408(6812):567-70. doi: 10.1038/35046041.
Variations in atmospheric radiocarbon (14C) concentrations can be attributed either to changes in the carbon cycle--through the rate of radiocarbon removal from the atmosphere--or to variations in the production rate of 14C due to changes in solar activity or the Earth's magnetic field. The production rates of 10Be and 14C vary in the same way, but whereas atmospheric radiocarbon concentrations are additionally affected by the carbon cycle, 10Be concentrations reflect production rates more directly. A record of the 10Be production-rate variations can therefore be used to separate the two influences--production rates and the carbon cycle--on radiocarbon concentrations. Here we present such an analysis of the large fluctuations in atmospheric 14C concentrations, of unclear origin, that occurred during the Younger Dryas cold period. We use the 10Be record from the GISP2 ice core to model past production rates of radionuclides, and find that the largest part of the fluctuations in atmospheric radiocarbon concentrations can be attributed to variations in production rate. The residual difference between measured 14C concentrations and those modelled using the 10Be record can be explained with an additional change in the carbon cycle, most probably in the amount of deep-water formation.
大气中放射性碳(14C)浓度的变化,要么归因于碳循环的变化——通过大气中放射性碳的去除速率,要么归因于由于太阳活动或地球磁场变化导致的14C产生率的变化。10Be和14C的产生率以相同方式变化,但大气放射性碳浓度还受到碳循环的影响,而10Be浓度更直接地反映产生率。因此,10Be产生率变化的记录可用于区分对放射性碳浓度的两种影响——产生率和碳循环。在此,我们对新仙女木寒冷期出现的、起源不明的大气14C浓度大幅波动进行了这样的分析。我们利用GISP2冰芯的10Be记录来模拟过去放射性核素的产生率,发现大气放射性碳浓度波动的最大部分可归因于产生率的变化。实测14C浓度与用10Be记录模拟的浓度之间的残余差异,可以用碳循环的额外变化来解释,很可能是深水形成量的变化。