Xiong M, Jin L, Li W, Boerwinkle E
University of Texas-Houston Health Science Center, Houston, TX, USA.
Biotechniques. 2000 Dec;29(6):1264-8, 1270. doi: 10.2144/00296bc02.
Gene expression profiles may offer more or additional information than classic morphologic- and histologic-based tumor classification systems. Because the number of tissue samples examined is usually much smaller than the number of genes examined, efficient data reduction and analysis methods are critical. In this report, we propose a principal component and discriminant analysis method of tumor classification using gene expression profile data. Expression of 2000 genes in 40 tumor and 22 normal colon tissue samples is used to examine the feasibility of gene expression-based tumor classification systems. Using this method, the percentage of correctly classified normal and tumor tissue was 87.0%. The combined approach using principal components and discriminant analysis provided superior sensitivity and specificity compared to an approach using simple differences in the expression levels of individual genes.
基因表达谱可能比基于经典形态学和组织学的肿瘤分类系统提供更多或额外的信息。由于所检测的组织样本数量通常远小于所检测的基因数量,因此高效的数据缩减和分析方法至关重要。在本报告中,我们提出了一种利用基因表达谱数据进行肿瘤分类的主成分和判别分析方法。使用40个肿瘤和22个正常结肠组织样本中2000个基因的表达情况来检验基于基因表达的肿瘤分类系统的可行性。使用该方法,正常组织和肿瘤组织的正确分类率为87.0%。与使用单个基因表达水平的简单差异的方法相比,主成分和判别分析相结合的方法具有更高的敏感性和特异性。