Suppr超能文献

使用一致性独立成分分析的基因表达数据分类

Gene expression data classification using consensus independent component analysis.

作者信息

Zheng Chun-Hou, Huang De-Shuang, Kong Xiang-Zhen, Zhao Xing-Ming

机构信息

College of Information and Communication Technology, Qufu Normal University, Rizhao 276826, China.

出版信息

Genomics Proteomics Bioinformatics. 2008 Jun;6(2):74-82. doi: 10.1016/S1672-0229(08)60022-4.

Abstract

We propose a new method for tumor classification from gene expression data, which mainly contains three steps. Firstly, the original DNA microarray gene expression data are modeled by independent component analysis (ICA). Secondly, the most discriminant eigenassays extracted by ICA are selected by the sequential floating forward selection technique. Finally, support vector machine is used to classify the modeling data. To show the validity of the proposed method, we applied it to classify three DNA microarray datasets involving various human normal and tumor tissue samples. The experimental results show that the method is efficient and feasible.

摘要

我们提出了一种基于基因表达数据的肿瘤分类新方法,该方法主要包含三个步骤。首先,利用独立成分分析(ICA)对原始DNA微阵列基因表达数据进行建模。其次,通过顺序浮动前向选择技术选择由ICA提取的最具判别力的特征分析。最后,使用支持向量机对建模数据进行分类。为了证明所提方法的有效性,我们将其应用于对三个包含各种人类正常和肿瘤组织样本的DNA微阵列数据集进行分类。实验结果表明该方法是有效且可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b619/5054104/f88e699a340e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验