Suppr超能文献

Glucose does not activate the plasma-membrane-bound H+-ATPase but affects pmaA transcript abundance in Aspergillus nidulans.

作者信息

Abdallah B M, Simões T, Fernandes A R, Strauss J, Seiboth B, Sá-Correia I, Kubicek C P

机构信息

Section of Microbial Biochemistry, Institute of Biochemical Technology and Microbiology, Vienna, Austria.

出版信息

Arch Microbiol. 2000 Nov;174(5):340-5. doi: 10.1007/s002030000212.

Abstract

The addition of glucose to starved cells of Aspergillus nidulans increased the abundance of the pmaA transcript only transiently (15 min) and to a very low degree (1.3-fold), but strongly decreased its abundance during further incubation. This down-regulation was CreA (carbon catabolite repressor protein)-dependent. Glucose failed to stimulate the plasma membrane (PM)-ATPase activity of A. nidulans, whereas under the same experimental conditions the activity of the enzyme from Saccharomyces cerevisiae was enhanced four-fold within 5-10 min following glucose addition. Glucose stimulated the PM-ATPase of Neurospora crassa only 1.3-fold. Sequence comparison of the C-terminal end of the PM-ATPase from S. cerevisiae, N. crassa, A. nidulans, Fusarium sporotrichoides and Penicillium simplicissimum showed that the two regulatory sites necessary for glucose stimulation in S. cerevisiae are conserved in N. crassa and F. sporotrichoides but not in A. nidulans and P. simplicissimum, and their presence therefore does not correlate with glucose stimulation. We conclude that, in contrast to S. cerevisiae, which has become a paradigm of fungal glucose metabolism, glucose does not up-regulate the activity of the plasma membrane ATPase in the filamentous fungi examined.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验