Blaudeck N, Sprenger G A, Freudl R, Wiegert T
Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
J Bacteriol. 2001 Jan;183(2):604-10. doi: 10.1128/JB.183.2.604-610.2001.
The bacterial twin arginine translocation (Tat) pathway translocates across the cytoplasmic membrane folded proteins which, in most cases, contain a tightly bound cofactor. Specific amino-terminal signal peptides that exhibit a conserved amino acid consensus motif, S/T-R-R-X-F-L-K, direct these proteins to the Tat translocon. The glucose-fructose oxidoreductase (GFOR) of Zymomonas mobilis is a periplasmic enzyme with tightly bound NADP as a cofactor. It is synthesized as a cytoplasmic precursor with an amino-terminal signal peptide that shows all of the characteristics of a typical twin arginine signal peptide. However, GFOR is not exported to the periplasm when expressed in the heterologous host Escherichia coli, and enzymatically active pre-GFOR is found in the cytoplasm. A precise replacement of the pre-GFOR signal peptide by an authentic E. coli Tat signal peptide, which is derived from pre-trimethylamine N-oxide (TMAO) reductase (TorA), allowed export of GFOR, together with its bound cofactor, to the E. coli periplasm. This export was inhibited by carbonyl cyanide m-chlorophenylhydrazone, but not by sodium azide, and was blocked in E. coli tatC and tatAE mutant strains, showing that membrane translocation of the TorA-GFOR fusion protein occurred via the Tat pathway and not via the Sec pathway. Furthermore, tight cofactor binding (and therefore correct folding) was found to be a prerequisite for proper translocation of the fusion protein. These results strongly suggest that Tat signal peptides are not universally recognized by different Tat translocases, implying that the signal peptides of Tat-dependent precursor proteins are optimally adapted only to their cognate export apparatus. Such a situation is in marked contrast to the situation that is known to exist for Sec-dependent protein translocation.
细菌双精氨酸转运(Tat)途径可将折叠蛋白转运穿过细胞质膜,在大多数情况下,这些折叠蛋白含有紧密结合的辅因子。具有保守氨基酸共有基序S/T-R-R-X-F-L-K的特定氨基末端信号肽将这些蛋白导向Tat转运体。运动发酵单胞菌的葡萄糖-果糖氧化还原酶(GFOR)是一种周质酶,紧密结合NADP作为辅因子。它作为细胞质前体合成,带有一个氨基末端信号肽,该信号肽具有典型双精氨酸信号肽的所有特征。然而,当在异源宿主大肠杆菌中表达时,GFOR不会输出到周质,并且在细胞质中发现了具有酶活性的前体GFOR。用源自三甲胺N-氧化物(TMAO)还原酶(TorA)前体的正宗大肠杆菌Tat信号肽精确替换前体GFOR信号肽,可使GFOR及其结合的辅因子输出到大肠杆菌周质。这种输出受到羰基氰化物间氯苯腙的抑制,但不受叠氮化钠的抑制,并且在大肠杆菌tatC和tatAE突变株中被阻断,表明TorA-GFOR融合蛋白的膜转运是通过Tat途径而非Sec途径发生的。此外,发现紧密的辅因子结合(因此正确折叠)是融合蛋白正确转运的先决条件。这些结果强烈表明,不同的Tat转运酶并不能普遍识别Tat信号肽,这意味着依赖Tat的前体蛋白的信号肽仅与其同源输出装置最佳适配。这种情况与已知的依赖Sec的蛋白转运情况形成鲜明对比。