Suppr超能文献

谷氨酸棒杆菌作为合成和分泌 D-氨基酸的宿主。

Corynebacterium glutamicum as a host for synthesis and export of D-Amino Acids.

机构信息

Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany.

出版信息

J Bacteriol. 2011 Apr;193(7):1702-9. doi: 10.1128/JB.01295-10. Epub 2011 Jan 21.

Abstract

A number of d-amino acids occur in nature, and there is growing interest in their function and metabolism, as well as in their production and use. Here we use the well-established l-amino-acid-producing bacterium Corynebacterium glutamicum to study whether d-amino acid synthesis is possible and whether mechanisms for the export of these amino acids exist. In contrast to Escherichia coli, C. glutamicum tolerates d-amino acids added extracellularly. Expression of argR (encoding the broad-substrate-specific racemase of Pseudomonas taetrolens) with its signal sequence deleted results in cytosolic localization of ArgR in C. glutamicum. The isolated enzyme has the highest activity with lysine (100%) but also exhibits activity with serine (2%). Upon overexpression of argR in an l-arginine, l-ornithine, or l-lysine producer, equimolar mixtures of the d- and l-enantiomers accumulated extracellularly. Unexpectedly, argR overexpression in an l-serine producer resulted in extracellular accumulation of a surplus of d-serine (81 mM d-serine and 37 mM l-serine) at intracellular concentrations of 125 mM d-serine plus 125 mM l-serine. This points to a nonlimiting ArgR activity for intracellular serine racemization and to the existence of a specific export carrier for d-serine. Export of d-lysine relies fully on the presence of lysE, encoding the exporter for l-lysine, which is apparently promiscuous with respect to the chirality of lysine. These data show that d-amino acids can also be produced with C. glutamicum and that in special cases, due to specific carriers, even a preferential extracellular accumulation of this enantiomer is possible.

摘要

自然界中存在许多 D-氨基酸,人们对它们的功能和代谢以及它们的生产和使用越来越感兴趣。在这里,我们利用成熟的 L-氨基酸生产菌谷氨酸棒杆菌来研究 D-氨基酸的合成是否可行,以及是否存在这些氨基酸的外排机制。与大肠杆菌不同的是,谷氨酸棒杆菌可以容忍细胞外添加的 D-氨基酸。缺失其信号序列的假单胞菌 Taetrolens 广谱特异性消旋酶基因 argR 的表达导致 ArgR 在谷氨酸棒杆菌中定位于细胞质。分离得到的酶对赖氨酸(100%)具有最高的活性,对丝氨酸(2%)也具有活性。在 L-精氨酸、L-鸟氨酸或 L-赖氨酸生产菌中转录表达 argR 时,会在外源积累等摩尔混合物的 D-和 L-对映体。出乎意料的是,在 L-丝氨酸生产菌中转录表达 argR 会导致细胞外积累过量的 D-丝氨酸(81mM D-丝氨酸和 37mM L-丝氨酸),而细胞内 D-丝氨酸和 L-丝氨酸的浓度分别为 125mM 和 125mM。这表明 ArgR 对内源丝氨酸消旋化的活性没有限制,并且存在一种专门的 D-丝氨酸外排载体。D-赖氨酸的外排完全依赖于编码 L-赖氨酸外排蛋白 lysE 的存在,该蛋白显然对赖氨酸的手性具有混杂性。这些数据表明,D-氨基酸也可以用谷氨酸棒杆菌来生产,并且在特殊情况下,由于特定的载体,甚至可以优先地在外源积累这种对映体。

相似文献

1
Corynebacterium glutamicum as a host for synthesis and export of D-Amino Acids.
J Bacteriol. 2011 Apr;193(7):1702-9. doi: 10.1128/JB.01295-10. Epub 2011 Jan 21.
2
A periplasmic, pyridoxal-5'-phosphate-dependent amino acid racemase in Pseudomonas taetrolens.
Appl Microbiol Biotechnol. 2009 Jul;83(6):1045-54. doi: 10.1007/s00253-009-1942-7. Epub 2009 Mar 20.
3
Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2016 Oct;100(19):8465-74. doi: 10.1007/s00253-016-7695-1. Epub 2016 Jun 27.
6
Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
Appl Microbiol Biotechnol. 2012 Mar;93(6):2493-502. doi: 10.1007/s00253-011-3771-8. Epub 2011 Dec 10.
7
Purification and characterization of an arginine regulatory protein, ArgR, in Corynebacterium glutamicum.
J Ind Microbiol Biotechnol. 2011 Dec;38(12):1911-20. doi: 10.1007/s10295-011-0977-9. Epub 2011 May 11.
8
Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production.
Microb Cell Fact. 2017 Sep 22;16(1):158. doi: 10.1186/s12934-017-0776-8.
9
Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum.
Appl Environ Microbiol. 2007 Feb;73(3):750-5. doi: 10.1128/AEM.02208-06. Epub 2006 Dec 1.
10
Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum.
J Biotechnol. 2011 Jul 10;154(2-3):191-8. doi: 10.1016/j.jbiotec.2010.07.009. Epub 2010 Jul 16.

引用本文的文献

1
Impact of exporter proteins and their engineering on the productivity of Corynebacterium.
Appl Microbiol Biotechnol. 2025 Apr 22;109(1):98. doi: 10.1007/s00253-025-13479-1.
2
Metabolic Engineering of Corynebacterium glutamicum for High-Level Production of 1,5-Pentanediol, a C5 Diol Platform Chemical.
Adv Sci (Weinh). 2025 Apr;12(13):e2412670. doi: 10.1002/advs.202412670. Epub 2024 Dec 27.
3
l-Alanine Exporter AlaE Functions as One of the d-Alanine Exporters in .
Int J Mol Sci. 2023 Jun 16;24(12):10242. doi: 10.3390/ijms241210242.
4
Customized chitooligosaccharide production-controlling their length engineering of rhizobial chitin synthases and the choice of expression system.
Front Bioeng Biotechnol. 2022 Dec 14;10:1073447. doi: 10.3389/fbioe.2022.1073447. eCollection 2022.
5
Exploitation of Ultrasound Technique for Enhancement of Microbial Metabolites Production.
Molecules. 2020 Nov 23;25(22):5473. doi: 10.3390/molecules25225473.
6
Recent Advances of L-ornithine Biosynthesis in Metabolically Engineered .
Front Bioeng Biotechnol. 2020 Jan 9;7:440. doi: 10.3389/fbioe.2019.00440. eCollection 2019.
7
Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test.
Metabolomics. 2018 Mar 2;14(4):43. doi: 10.1007/s11306-018-1339-7.
9
Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
BMC Microbiol. 2016 Oct 7;16(1):235. doi: 10.1186/s12866-016-0857-6.
10
Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum.
J Biol Chem. 2016 Mar 18;291(12):6583-94. doi: 10.1074/jbc.M115.695320. Epub 2016 Jan 27.

本文引用的文献

1
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production.
Appl Environ Microbiol. 2010 Dec;76(24):8053-61. doi: 10.1128/AEM.01710-10. Epub 2010 Oct 8.
3
Putrescine production by engineered Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2010 Oct;88(4):859-68. doi: 10.1007/s00253-010-2778-x. Epub 2010 Jul 27.
4
Stereoselective transport of amethopterin enantiomers by the proton-coupled folate transporter.
Drug Metab Pharmacokinet. 2010;25(3):283-9. doi: 10.2133/dmpk.25.283.
6
Engineering Corynebacterium glutamicum for isobutanol production.
Appl Microbiol Biotechnol. 2010 Jul;87(3):1045-55. doi: 10.1007/s00253-010-2522-6. Epub 2010 Apr 8.
7
Transmembrane amino acid flux in bacterial cells.
Crit Rev Biotechnol. 1987;5(1):1-47. doi: 10.3109/07388558709044151.
8
A periplasmic, pyridoxal-5'-phosphate-dependent amino acid racemase in Pseudomonas taetrolens.
Appl Microbiol Biotechnol. 2009 Jul;83(6):1045-54. doi: 10.1007/s00253-009-1942-7. Epub 2009 Mar 20.
9
Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.
Appl Environ Microbiol. 2009 Mar;75(6):1635-41. doi: 10.1128/AEM.02027-08. Epub 2009 Jan 9.
10
Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.
Appl Environ Microbiol. 2009 Jan;75(2):419-27. doi: 10.1128/AEM.01844-08. Epub 2008 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验